
Runtime Modularity in Complex Structures:
A Component Model for Fine Grained Runtime Adaptation

Barry Porter
School of Computing and Communications

Lancaster University
Lancaster, UK

b.f.porter@lancaster.ac.uk

ABSTRACT
Online modular adaptation and self-adaptation techniques
have demonstrated significant benefits in coarse-grained soft-
ware, enabling agile and high-performance deployments. We
are studying the same kinds of runtime adaptation applied
to fine-grained software such as graphical user interfaces and
web server implementations. However, this kind of software
is defined by pervasive use of behaviourally-driven structure.
Existing runtime component models fail to capture this ne-
cessity due to their exclusive reliance on externally-driven
structural composition. In this paper we present a novel
runtime component model that both satisfies the need to ex-
ternally manage software structure, enabling runtime adap-
tation and self-adaptation, while also satisfying the need for
fine-grained software to create elements of its own structure
based on application-specific system behaviour. We present
the key details of our model along with an initial evaluation.

Categories and Subject Descriptors
D.2.3 [Software Engineering] Coding Tools and Tech-
niques – Component models

1. INTRODUCTION
Online modular adaptation and self-adaptation methods,

in which software can evolve its composition at runtime,
have demonstrated significant benefits in coarse-grained soft-
ware [4, 13, 8, 16, 12]. In detail, these approaches propose
that software continually observes its external environment,
while also measuring its own behaviour and performance, to
constantly adapt itself towards optimal compositions.

We are studying the use of online component-based adap-
tation and self-adaptation in fine-grained software systems.
By fine-grained we refer to software such as graphical user
interfaces, web server implementations, and database imple-
mentations. We are interested in decomposing this kind of
software into its smallest re-usable units and making those
units into strongly separated components, the composition
of which we can then reason about and adapt at runtime.
By doing this we are able to investigate similar levels of
performance enhancement, agility, and complexity manage-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CBSE’14, June 30–July 4, 2014, Marcq-en-Baroeul, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2577-6/14/06 ...$15.00.
http://dx.doi.org/10.1145/2602458.2602471.

ment to that seen in the application of runtime adaptation
to coarser-grained modular software as mentioned above.

The current crop of runtime component models, however,
fails to apply to fine-grained software. In particular, all run-
time component models that we are aware of strictly enforce
and manipulate software structure externally to the compo-
nents that make up a system’s behaviour [6]. The compo-
sition of system structure is therefore the exclusive domain
of a ‘meta-level’ or ‘composition level’ which lies outside the
application-specific behaviour of the software system. This
approach works well at coarse software granularity and in-
deed is an important enabler of modular runtime adaptation.

Unfortunately, at fine software granularity, it is very diffi-
cult to design systems whose structures are entirely defined
by such an external entity. This is because (i) ‘instances’
must often be created as a direct result of system behaviour;
and (ii) these instances must interact with each other using
(correspondingly) behaviourally-driven structure. Examples
of behaviour-based instance cardinality include populating
a window with graphical widgets such as file or directory en-
tries in a file browser; and instance-per-client architectures
in network server implementations. Example inter-instance
structures include observer patterns in event-based logic or
polymorphic iterators in centralised control dispatch logic.

In this paper we present a novel runtime component model
that both satisfies the need to externally manage software
structure, supporting runtime software adaptation and self-
adaptation, while also satisfying the need for fine-grained
software to create elements of its own structure based on
its application-specific system behaviour. Our model links
these two distinct structural levels (externally-imposed and
internally-driven) together into a fully generalised runtime
adaptable paradigm for fine-grained software.

In detail, we propose a runtime component model with:

1. A traditional macro-level of strongly-separated soft-
ware components. Each component exports provided
and required interfaces that are wired / re-wired by an
external meta-level to drive runtime adaptation.

2. A novel micro-level in which components freely cre-
ate micro-component instances from each required in-
terface based on their application-specific behaviour.

3. A concept of gateways to support referential persis-
tence for micro-components, linking freeform micro-
structure to meta-level adaptation of macro-structure.

In the remainder of this paper we first present our compo-
nent model in Sec. 2. We then present an initial evaluation
of the key aspects of our model in Sec. 3, followed by a survey
of the literature in Sec. 4. We offer conclusions in Sec. 5.

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Component-Based Software Engineering, 2014, http://dx.doi.org/10.1145/2602458.2602471.

2. THE DANA COMPONENT MODEL
Our component model is realised within a full-featured,

purpose-built programming language called Dana [1]. In the
majority of this paper we focus on the runtime component
model on which Dana is founded, enabling runtime adap-
tation in fine-grained software structures. At a language
level all functionality in Dana is expressed within strongly-
separated components that are independently deployable. It
is an imperative, procedural, interpreted language, is multi-
threaded, and features only interface, record and primitive
types. It is syntactically similar to contemporary languages
like Java and its source code library includes over 100 com-
ponents from networking and data manipulation to graphics
and system-level APIs. In the remainder of this section we
first describe the Dana component model in detail, then we
provide an example of its use in fine-grained structures, and
finally we describe its runtime adaptation mechanics.

2.1 Component model details
A software component in our model is defined as a unit of

functionality that expresses one or more ‘provided’ interfaces
and zero or more ‘required’ interfaces. An interface is a list
of function prototypes and each interface type may inherit
from one other interface type. Interfaces that do not explic-
itly inherit from another type automatically inherit from a
common base type which includes the functions equal(),
clone() and toString(). Each component may only use
external functionality via its required interfaces.

A system is constructed from a composition of compo-
nents, created by loading each desired component into mem-
ory and interconnecting each required interface of each com-
ponent to a type-compatible provided interface on another
component. This composition is performed by a third-party
‘meta-program’ outside the behaviour of the components
that make up the system itself. Aside from interface in-
heritance, this core design is similar to classic runtime com-
ponent models (e.g. [3, 5]) and enables a meta-program to
compose systems from the desired units of functionality and
later adapt those systems online to meet changing needs.

Beyond these fundamentals however our component model
diverges significantly from its contemporaries as follows.

Firstly, we introduce the concept of a ‘micro-component’.
In detail, each provided interface that a component adver-
tises actually represents an instantiable micro-component
(or ‘microcom’). Each such microcom has one primary in-
terface, which maps to a component’s advertised provided
interface as described above, and zero or more secondary in-
terfaces. Each microcom may also have its own per-instance
state. These structural elements are illustrated in Fig. 1.
Secondary interfaces, and any per-instance state, used by
a microcom are a part of its implementation detail. Two
components can thus provide the same interface type which
internally maps to two different microcom implementations
with different secondary interfaces and different instance
state. The syntax with which components declare provided
interfaces is exemplified in Fig. 3(a); this component pro-
vides an instantiable microcom with a primary interface of
type FileBrowser (i.e. a provided interface of the compo-
nent) and a secondary interface of type ClickListener.

Symmetrically, each required interface that a component
declares in fact therefore represents an instantiable micro-
com sourced from the component to which that required
interface is currently connected.

component

microcom

[provided] interface

primary interface

secondary

interface

secondary

interface

[required] interface

Figure 1: The main structural elements of our com-
ponent model. Secondary interfaces of microcoms,
and any per-instance state fields, are internal imple-
mentation details that are not outwardly visible.

Microcoms can be instantiated in a completely freeform
manner (such as instantiating many graphical, clickable file
representations) according to the particular behaviour of a
given component. Furthermore, references to microcoms
(specifically to one of their interfaces) can be handed around
to other microcoms in a similarly freeform fashion by passing
them as parameters to functions. Complete micro-structures
(such as a observer patterns or polymorphic collections) of
microcom instances and inter-instance references can thus
be formed as a result of system behaviour.

The second novel feature of our model is then the way
in which macro-structure (components and inter-component
wiring) is linked to micro-structure (microcoms and inter-
microcom reference graphs) in the face of externally-driven
runtime adaptations in the former.

This is achieved with the concept of gateways. In de-
tail, whenever a component C uses one of its required in-
terfaces to create a new microcom in another component,
a gateway is created in C which serves as an indirection
to that microcom. A gateway adopts the interface type of
the corresponding required interface (which is respectively
the provided interface type to which it is connected, and is
by extension the primary interface of the microcom) and so
serves as a gateway to a microcom whose primary interface
is of that type. Whenever a component C hands out a ref-
erence to a microcom that it created, it actually hands out
a reference to its gateway for that microcom. When a re-
quired interface of C is being re-wired to a different provider
component, all of C’s gateways from that required interface
stay in place, while the microcoms behind it are switched to
instances from the new provider component. We return to
runtime adaptation mechanics in more detail in Sec. 2.3.

At the macro level our components exhibit all the features
of traditional runtime component models [15, 10]. They are
independently deployable, using only explicitly-declared de-
pendencies, making them highly re-usable and their compo-
sitions highly re-configurable. They also offer the strong dis-
cretisation of software that makes component-based compo-
sitions particularly conducive to introspection, self-analysis
and self-adaptation [10]. At the micro-level, meanwhile,
components can freely create microcom instances and can
freely pass around references to them, knowing that these
instances and inter-instance reference graphs will remain
in place despite implementation changes caused by runtime
adaptation at the macro level. In the next section we use an
example GUI system to demonstrate these concepts.

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Component-Based Software Engineering, 2014, http://dx.doi.org/10.1145/2602458.2602471.

KNFileBrowser

FMFile

SimpleWindow

MyApp

FileBrowser

UIFile

Window

ScrollPanel

Panel

File browser components

Figure 2: Component architecture of our example
system. As shown in Fig. 1, note that an instantiable
microcom implementation lies behind each provided
interface (not shown here to simplify the diagram).

2.2 Example system
To better illustrate our component model we now present

a simple example using part of a file browser dialog. This is
taken from one of our graphical user interface systems and
demonstrates both behaviourally-driven microcom instance
populations and inter-instance reference graphs (via an ob-
server pattern and a polymorphic collection).

The functionality of the file browser is simply to be given
a directory D and to display each directory and file that D
contains. The user can click on a displayed directory D′ to
move into it, thereby showing the contents of D′ instead.

At the macro level the file browser is composed of a file
browser component, a panel component which arranges the
file display artefacts, and a graphical file representation com-
ponent which provides the visual appearance of files and di-
rectories. The composition can be reconfigured online to
change the way in which files are displayed (as a simple
scrolling list or as a variety of alternatives) depending on
user preferences, accessibility considerations, and the num-
ber and types of files in a particular directory.

The macro architecture is illustrated in Fig. 2 and source
code extracts of the components are shown in Fig. 3.

Within the outer macro level is a complex, behaviourally-
driven population of microcom instances and inter-instance
references forming a dynamic micro-structure. Aided by the
use of gateways as detailed earlier, this micro-structure stays
in place despite runtime adaptations affecting the macro-
structure when required interfaces are re-wired to alterna-
tive components. These forms of micro-structure pervade
the kinds of fine-grained software that we target and demon-
strate the novel abilities of our component model.

For example, in Fig. 3(a) we see a function setDir() which
needs to instantiate many ‘UIFile’ microcoms (line 8), each
representing one directory or file in the current directory.
Similar patterns are found in other kinds of systems software
such as instance-per-client patterns and worker pools.

componentfprovidesfFileBrowser.ClickListenerE

ffffffffffrequiresfUIFile<fPanel<fFileSystemffs{

fffPanelfmyPanel6

fff

fffvoidfFileBrowser5setDir.charfpath[]E{

ffffffmyPanelOclear.E6

ffffffFileEntryffiles[]f8ffsOgetFiles.pathE6

ffffffforf.intfi6fif7ffilesOarrayLength6figgE{

fffffffffUIFilefnff8fnewfUIFile.files[i]OpathE6

fffffffffnfOaddListener.thisE6

fffffffffmyPanelOaddObject.nfE6

fffffffff}

ffffff}

fff

fffvoidfClickListener5click.ObjectfoE{

ffffffUIFilefff8fo6

ffffffiff.fOisDirectory.EE

fffffffffsetDir.fOgetPath.EE6

ffffff}

fff}

componentfprovidesfPanel{

fffGraphicsObjectfobjects[]6

fff

fffvoidfPanel5addObject.GraphicsObjectfgoE{

ffffffobjectsfg8fgo6

ffffffb=fOOOfpositionfthefobjectfOOOf=b

ffffff}

fffvoidfPanel5paint.CanvasfcE{

ffffffcOdrawRect.OOOE6

ffffffb=fOOOfnowfdrawfmyfobjectsfOOOf=b

ffffff}

fff}

KNFileBrowser

ScrollPanel

(a)

(b)

f}

fG

f/

f*

fR

f1

f2

f3

f4

}j

}}

}G

}/

}*

}R

}1

}2

}3

}4

f}

fG

f/

f*

fR

f1

f2

f3

f4

}j

}}

}G

}/

Figure 3: Source code extracts from our example
system. We do not have space to show the interfaces
used here; note however that the UIFile interface for
example inherits from ClickableObject which in turn
inherits from GraphicsObject. All source code from
this example system is available online [2].

The same function drives two other kinds of common
micro-structure in the form of an observer pattern and a
polymorphic collection. The observer pattern is used on
line 9 of Fig. 3(a). Here the FileBrowser microcom reg-
isters itself, using its internal secondary interface of type
ClickListener, as a callback target with each UIFile mi-
crocom. Similar fine-grained software patterns include sys-
tem up-calls and dynamic event-condition-action logic.

The polymorphic collection is used on line 10 of Fig. 3(a).
Here the ‘panel’ microcom is provided with a reference to
each file microcom created by the file browser. As shown in
Fig. 3(b) (line 4) the panel component accepts as a parame-
ter to this function any microcom with an interface that is a
subtype of GraphicsObject. Key to our model is that even
if the implementation of the UIFile microcoms is changed at
runtime, gateways ensure that all references to those micro-
coms held by the panel will still be valid (and will have been
automatically routed to equivalent microcoms of the new im-
plementation). Similar polymorphic collection patterns are
found in other kinds of systems software like queueing mod-
ules and centrally-orchestrated task execution managers.

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Component-Based Software Engineering, 2014, http://dx.doi.org/10.1145/2602458.2602471.

2.3 Runtime adaptation mechanics
Runtime adaptation allows us to adjust software to its

current deployment environment by selecting between dif-
ferent components that are judged to be best suited to cur-
rent conditions. Self -adaptation occurs when a software sys-
tem analyses its own behaviour and performance and uses
runtime adaptation to optimise that performance without
human intervention. This approach fosters agile and high-
performance systems in changing environments such as vari-
able client workloads or fluctuations in system resources.

In this section we present Dana’s runtime adaptation me-
chanics. Runtime adaptation in general has two impor-
tant elements: the mechanism(s) by which adaptation is
achieved; and the way in which continuity of overall system
integrity (or state) is maintained when adaptation occurs.

2.3.1 Adaptation mechanics
The single mechanism by which Dana supports runtime

adaptation is by allowing a meta program to re-wire a se-
lected required interface of a component C from its cur-
rent resolution against component D to instead be resolved
against a different component E. This is illustrated below.
Wider architectural change occurs when component E itself
has a different set of required interfaces than D. Component
E could for example be a completely different implemen-
tation of D, implying different behaviour and performance
characteristics; or could be an interceptor component that is
actually itself connected to D through one if its own required
interfaces and which simply performs some pre-processing
before calls arrive at D; or could even be acting as a proxy
to a remote version of D running on a different host.

C

RI

EDimplementations of
microcoms created
by C via RI

transfer

RI's gateways

Unlike contemporary runtime component models, Dana
uses each required interface as a source of microcom in-
stances, created and destroyed as needed by the component
declaring that required interface. Many microcom instances
sourced from that interface may thus be active at any time.

The runtime adaptation procedure therefore works in the
following stages. First, we isolate (or ‘pause’) the required
interface, stopping further interaction through it and so pre-
venting further externally-driven state transitions in the as-
sociated microcoms. This works simply by waiting for any
existing function calls passing through a required interface to
complete, and holding any new function calls at the required
interface boundary. Once paused we then iterate over each
microcom that is active over that required interface, sourced
from component D, and transfer each such microcom to in-
stead be sourced from component E (including state trans-
fer). Once this is complete the selected required interface
is finally ‘resumed’, re-enabling interaction through it (and
allowing any calls held at the required interface to proceed).

voidCUIFile:clone5ObjectCo6C{

CCCUIFileCprevC=Co;CCUIFile5prev.getFile566;

CCCPointCpC=Cprev.getPosition56;

CCCsetPosition5p.x,Cp.y6;

CCClistenersC=Cprev.getClickListeners56;

CCC}

C1

C2

C3

C4

C5

C6

2.3.2 System integrity across adaptation
The way that we maintain continuity of overall system in-

tegrity (or state) across adaptations is then as follows. As
part of the process of iterating over each microcom active
over a required interface, we perform state transfer to mi-
crocom instances from the new implementing component.
In detail, for each microcom instance i active over RI of
component C we use Dana’s ‘transfer’ procedure to migrate
microcomi to its new implementation in component E. This
transfer procedure first creates a new microcom instance us-
ing the corresponding provided interface of component E
and then invokes the clone() function (from the common
interface base type mentioned in Sec. 2.1) on that new mi-
crocom, passing in a reference to the existing microcom in-
stance sourced from component D. From within its clone()
function, the new microcom instance sourced from compo-
nent E is then able to use the functions from the microcom’s
primary interface (which both the existing and new micro-
com must necessarily have in common) to manually extract
any necessary state from the existing instance (i.e. using
‘getter’ functions) and apply that state to itself.

It is important to note that the actual implementation
of clone() functions is left entirely to the programmer to
write as appropriate, including designing necessary ‘getter’
functions in interfaces. An example is shown above. We are
not therefore concerned with any semantic or structural is-
sues of inter-component state compatibility that occur with
many automated or transparent state transfer mechanisms.

Finally, as detailed in Sec. 2.1, our component model uses
gateways to provide sufficient indirection to ensure that any
references to microcoms that are migrated to a new imple-
mentation remain valid despite the fact that their implemen-
tation (and internal state representation) has changed. After
each state transfer operation, the Dana runtime thus com-
pletes the overall transfer procedure by updating the gate-
way for that particular microcom instance so that it points
at the new instance in the new component (component E).
It is this mechanism that links freeform micro-structure to
externally-controlled and adapted macro-structure.

In detail, recall that whenever a microcom is instantiated,
a gateway for that microcom is made in its creator. Any
references to a microcom that are then handed out by its
creator are actually references to that gateway, which lies
in the creator’s internal state rather than in the implement-
ing component of the microcom. As described above, these
gateways stay in place despite changes to the component
that is implementing the microcoms behind those gateways.

Not all forms of microcom reference enjoy persistence
across adaptation, however. In detail we say that microcom
references that are handed out by the creator of a microcom
will persist across evolutions of that microcom’s implemen-
tation, since the creator is not the subject of the evolution
(i.e. it is staying in the system) and as such any effects of its
implementation logic should persist. This applies for exam-
ple to the references to UIFile instances (via nf) that are
handed out to the Panel instance on line 10 of Fig. 3(a).

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Component-Based Software Engineering, 2014, http://dx.doi.org/10.1145/2602458.2602471.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Intra Inter Intra Inter

Dana OpenCOM C

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

+ 2.8%

+ 0.9%

Figure 4: Differences in execution speed for 1 million
calls when using internal component (local/intra)
calls versus inter-component calls.

In contrast, microcom references that are handed out by
a microcom instance itself (i.e. self-references derived using
the ‘this’ notation) do not persist across runtime evolutions
of that microcom’s implementation. Instead such references
are removed from the system after transfer is complete. This
is done to avoid the need to make any assumptions between
two different components implementing the same interface.
Specifically, the incoming implementation can safely assume
that it is starting from a ‘clean slate’ when state is trans-
ferred into microcom instances that it implements. It can
then choose when and to whom any self-references should
be handed out according only to the logic of its own imple-
mentation, safe in the knowledge that no other self-passed
references to its microcoms are left over from the logic per-
formed by other implementations. In this way components
can be designed as black boxes and will operate in a consis-
tent way with respect to runtime adaptation procedures.

3. INITIAL EVALUATION
In this section we provide an initial evaluation of the main

elements of our component model’s baseline performance
characteristics. Our aim is to demonstrate a capable level of
performance primarily in terms of execution speed (we con-
sider program size less important for modern computers).

The main factor involved is the extra level of indirection
that gateways create for any references used by, and given
out by, the creators of microcoms. In addition to this there
is a minor added overhead in making inter-component calls
due to the need for our runtime to check whether or not a
required interface is currently paused. All experiments were
conducted on a 1.8Ghz Intel Atom Z2760 with Windows 8.1.

Fig. 4 shows the differences in call speed between local
function calls (within a component) and inter-component
calls. This experiment was performed both with Dana and,
as a point of comparison, for the C implementation of Open-
COM [5], a traditional runtime component model that does
not support fine-grained sub-structure. The results demon-
strate the expected performance delta between local and
inter-component calls. As noted above, we expect that the
difference is greater in Dana due to the extra gateway in-
direction along with checks on required interface paused
status. OpenCOM, by comparison, does not use gateway-
like mechanics because it lacks support for fine-grained be-
haviourally driven structures, and has no in-built ‘pause’
feature to aid with seamless runtime adaptation.

Examining the ratio of local to inter-component micro-
com calls, our simple GUI file browser example performs
2164 local calls during startup and 25999 inter-component

microcom calls; 92.3% of all calls in this example are there-
fore microcom calls. Such a ratio is expected due to the finer
granularity of component in our model, though in more com-
plex systems we might tend to find lower ratios when indi-
vidual functions carry out more work. Inter-component calls
in this kind of model may therefore be a particular target
for some form of just-in-time compilation.

On a qualitative level, our graphical user interface systems
demonstrate sufficiently high levels of execution speed to
provide an interactive user experience. The above overheads
do not therefore appear to noticeably harm overall system
performance impressions on modern commodity hardware.

In future we expect the performance figures reported here
to improve further in successive iterations of our implemen-
tation. In future work we also intend to perform a more
extensive evaluation in multiple different kinds of example
system to provide a more complete picture.

4. RELATED WORK
In this section we examine related work in three cate-

gories. First, in Sec. 4.1, we discuss existing runtime com-
ponent models. In Sec. 4.2 we then examine runtime update
approaches in the Java platform in particular. Finally in
Sec. 4.3 we discuss the rationale for using a new language.

4.1 Runtime component models
All existing runtime component models that we are aware

of lack support for the behaviourally-driven sub-structural
relationships that we have described throughout this paper
and which pervade fine-grained software. Examples of such
component models include [5, 11, 3]; see [6] for a recent
survey of work in this field. Specifically, these models fo-
cus on wiring components together as instances and have
no feature for those components to then go on to create
sub-structural constructs as a factor of their behaviour (and
pass sub-structural references around to create entire micro-
structural graphs driven by that behaviour).

Because these behavioural factors are far too application-
specific for a runtime meta-model to describe, these mod-
els are therefore limited either to relatively simple software
structures or else tend towards coarse-grained components.

Our aim to apply runtime component-based adaptation
to finer-grained, structurally complex systems functionality
therefore required a rethink of the component paradigm.
This has resulted in the model described in this paper in
which traditional macro-level components can create micro-
components on demand as a factor of their behaviour.

4.2 Runtime update approaches in Java
The popularity of the Java language platform has created

significant interest in approaches to increase the reconfig-
urability of Java programs. There are two main bodies of
work in this area: component models like OSGi and EJB,
and runtime update approaches like Javeleon and JRebel.

The component models were designed with very different
requirements to ours and so work in correspondingly differ-
ent ways. EJB is a server-side technology for client/server
interactions with the intention of separating ‘container’ con-
cerns (like security and access/interaction technology) from
functional behaviour. Components in EJB sit in tightly de-
fined categories such as ‘stateful’ and ‘message-driven’ and
have corresponding constraints on their interactions. It is
not therefore a general-purpose system building technology.
OSGi, meanwhile, is primarily designed to support plug-in
architectures. It works at a coarse granularity by arrang-

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Component-Based Software Engineering, 2014, http://dx.doi.org/10.1145/2602458.2602471.

ing Java classes into jar ‘bundles’ and using the concept of
a ‘bundle scope’ – a private classloader scope which hides
internal classes of the bundle aside from selected exceptions
that form the exported services of a component. While the
amount of inter-bundle micro-structure is unbounded (as all
of the usual Java features are available) there is no link
from this micro-structure to a meta-level controlled macro-
structure. This effectively prevents post-initialisation online
architecture adaptation over a system’s execution.

The runtime update approaches (like JRebel [9], Javeleon
[7] and JavAdaptor [14]) are designed to transparently sup-
port dynamic differential patching of Java programs while
they execute. As input they take the current system ar-
chitecture (often examining its source code) along with the
updated system architecture’s source code and calculate a
way to transform the former to the latter without taking the
program offline. These approaches work for some difference
patterns but will fail if the scale of difference is too great, for
example with major changes to the internal member fields of
a particular class. In addition to these limitations, the main
drawback of these approaches in terms of our requirements is
that they are designed only for administratively-instructed
updates. This makes them unsuitable for self-adaptation ap-
proaches which require strong discretisation of software into
‘components’ and ‘connections’ as first-class concepts [10].

4.3 Language comparison
Developing a new language as part of a component model

is a larger undertaking than developing a language-targeted
runtime component model of the kind mentioned in Sec. 4.1.
We took this route to provide a clean and simple program-
ming model and also to avoid some of the pitfalls of using
popular languages like C and Java. For C, these limitations
include a lack of desirable constructs like ‘instances’ and
‘interfaces’ as well as the difficulty of intercepting multi-
threaded inter-component interactions when runtime adap-
tation takes place. Other drawbacks include robustness (one
faulty component can bring down the entire system) and
multi-platform portability / interaction. In Java, while many
drawbacks of C are improved, the introduction of typed
classes makes fully generalised runtime loading and unload-
ing of classes very difficult (see [7, 14]), and the uncon-
strained mixing of data and behaviour in ‘objects’ signifi-
cantly hinders well-structured runtime adaptation.

5. CONCLUSION AND OUTLOOK
In this paper a novel runtime component model is pro-

posed that supports the expression of behaviourally-driven
micro-structural relationships. This is achieved by introduc-
ing the concept of a ‘micro-component’ for freeform instan-
tiation and inter-instance referencing. At the same time our
model supports unconstrained adaptation of the macro-level
component graph and uses a new concept of ‘gateways’ to
link the micro- and macro-levels together across adaptation.

Our model is highly adept at implementing finer-grained
software in which this kind of micro-structure is pervasive.
This in turn supports our study of runtime adaptation and
self-adaptation in such systems to examine the performance
improvements and higher-level reasoning that can be gained.

In future work we intend to provide a more extensive eval-
uation, both quantitative and qualitative, of our component
model, as well as continue to explore the benefits of run-
time adaptation in fine-grained software such as web server
implementations, databases and graphical user interfaces.

6. REFERENCES
[1] Dana language: http://www.projectdana.com/.

[2] Demos and code from this paper with instructions:
http://research.projectdana.com/cbse2014porter.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema,
and J.-B. Stefani. An open component model and its
support in java. In Component-Based Software
Engineering, volume 3054 of LNCS, pages 7–22.
Springer Berlin Heidelberg, 2004.

[4] S. Chaitanya, D. Vijayakumar, B. Urgaonkar, and
A. Sivasubramaniam. Middleware for a re-configurable
distributed archival store based on secret sharing. In
Proceedings of the ACM 11th International Conference
on Middleware, Middleware ’10, pages 107–127,
Berlin, Heidelberg, 2010. Springer-Verlag.

[5] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia,
K. Lee, J. Ueyama, and T. Sivaharan. A generic
component model for building systems software. ACM
Trans. on Comp. Systems, 26(1):1:1–1:42, Mar. 2008.

[6] I. Crnković, S. Sentilles, A. Vulgarakis, and M. R. V.
Chaudron. A classification framework for software
component models. Software Engineering, IEEE
Transactions on, 37(5):593–615, 2011.

[7] A. R. Gregersen and B. N. Jørgensen. Dynamic update
of java applications: Balancing change flexibility vs
programming transparency. Journal of Software
Maintenance and Evolution, 21(2):81–112, Mar. 2009.

[8] D. Hughes, P. Greenwood, G. Blair, G. Coulson,
P. Grace, F. Pappenberger, P. Smith, and K. Beven.
An experiment with reflective middleware to support
grid-based flood monitoring. Concurrency and
Compututation: Practice and Experience,
20(11):1303–1316, Aug. 2008.

[9] J. Kabanov. JRebel tool demo. Electron. Notes Theor.
Comput. Sci., 264(4):51–57, Feb. 2011.

[10] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The
case for reflective middleware. Communications of the
ACM, 45(6):33–38, June 2002.

[11] J. Magee, J. Kramer, and M. Sloman. Constructing
distributed systems in conic. Software Engineering,
IEEE Transactions on, 15(6):663–675, 1989.

[12] D. A. Menasce, J. a. P. Sousa, S. Malek, and
H. Gomaa. Qos architectural patterns for
self-architecting software systems. In Proc. of the 7th
Int. Conf. on Autonomic computing, ICAC ’10, pages
195–204, New York, NY, USA, 2010. ACM.

[13] J. Philippe, N. De Palma, F. Boyer, and O. Gruber.
Self-adapting service level in java enterprise edition. In
Proceedings of the 10th ACM International Conference
on Middleware, Middleware ’09, pages 8:1–8:20, New
York, NY, USA, 2009. Springer-Verlag New York, Inc.

[14] M. Pukall, C. Kästner, W. Cazzola, S. Götz,
A. Grebhahn, R. Schröter, and G. Saake. Javadaptor :
flexible runtime updates of java applications. Software,
practice and experience, 43(2):153 – 185, 02 2013.

[15] C. Szyperski, D. Gruntz, and S. Murer. Component
Software: Beyond Object-Oriented Programming. Acm
Press Series. ACM Press, 2002.

[16] W. Wang and G. Huang. Pattern-driven performance
optimization at runtime: experiment on JEE systems.
In Proc. of the 9th Workshop on Adaptive and
Reflective Middleware, pages 39–45. ACM, 2010.

This is the author’s version of this work, made available for your personal use only. Not for redistribution. The definitive
version was published in ACM Component-Based Software Engineering, 2014, http://dx.doi.org/10.1145/2602458.2602471.

