
Demo Abstract: The Lorien dynamic component based OS

Barry Porter Utz Roedig François Taı̈ani Geoff Coulson
barry.porter@comp.lancs.ac.uk

School of Computing and Communications
Lancaster University, UK

1 Lorien
In this demo we show how the Lorien operating system

[5] supports lightweight, efficient and safe online changes
to any aspect of the software running on sensor nodes –
and how this promotes reuse of deployed sensor networks
through run-time software evolution.

Lorien is based on three principles:

i. pure dynamic component design enabling lightweight
software evolution to all parts of node software

ii. abstract architecture description promoting indepen-
dence and persistence of software evolutions

iii. system integrity rules promoting safety of online
changes to any part of node software

We believe that Lorien is unique in its support for safe, in-
cremental online software evolution, and in the scope of this
support which ranges from the lowest level drivers through
protocols and application components. This goes signifi-
cantly beyond contemporary WSN operating systems such as
TinyOS [4], Contiki [2] and SOS [3] which either offer only
offline image-based software updates or else provide only
limited-scope online software evolution that is restricted to
application-level code and lacks strong integrity support.

1.1 Pure Dynamic Component Design
Lorien’s uniformly applied component-based program-

ming model is designed to support online changes to any
aspect of node software – the ability to add/remove appli-
cations is therefore simply one particular use of this model;
adding new protocols, drivers, filesystems, schedulers and so
on works in exactly the same way.

This capability is based around a dynamic component
model written in plain C and supported by a component run-
time through which components can be individually loaded,
instantiated, destroyed and unloaded at will. Even Lorien’s
dynamic loader/linker and component runtime are compo-
nents that can be replaced or architecturally reconfigured at
runtime. Components use formal required and provided in-
terfaces to interact (where an interface is a typed collection
of functions); required interfaces are connected at runtime to
compatible provided interfaces to satisfy dependencies.

Copyright is held by the author/owner(s).
SenSys’10, November 3–5, 2010, Zurich, Switzerland.
ACM 978-1-4503-0344-6/10/11

Component 
runtime

RUNTIME

Program mem. 
filesystem

ROMFS

Global System 
Configuration

GSC

Radio driver

RADIO

Sensor

TEMPSENSE
Concurrency 

model

SCHEDULER

Timer

TIMER

MAC protocol

MAC
Random number Random number 

generator

RANDOM

Sensing 
Application

BEACON
Reconfiguration Reconfiguration 

Application

RECON

Deluge file 
propagation

FILEPROP

External flash
filesystem

MASSSTORAGE

Dynamic loader / Dynamic loader / 
linker

LOADER

Figure 1. Architecture of a typical pure dynamic Lorien
system. Each shaded box is an instance of an indepen-
dently loadable/unloadable & instantiable component.

1.2 Abstract Architecture
Rather than hard-coding a system’s configuration, Lorien

uses an abstract architecture description that facilitates the
independence and persistence of software evolution steps.
Each element in a Lorien system is described by a ‘config-
uration fragment’, consisting of an abstract role name, the
specific component currently filling that role, and a list of
that component’s immediate dependencies; the component
filling a role can of course change using a different fragment.

A list of configuration fragments describing the entire
system is then maintained in a ‘manifest’ stored in persistent
memory. As components come and go Lorien opportunisti-
cally satisfies dependencies whenever possible. Components
can therefore be added to or removed from the system in
any order, each configuration fragment being an independent
piece of sub-architecture with respect to the rest of the sys-
tem, able to be composed into a range of system architectures
without needing an understanding of the big picture.

A complete example Lorien system in shown in Figure 1,
with abstract role names in capitals. Corresponding example
configuration fragments are given in Figure 2.



Radio.cfg
[Role]
Radio=radio.so

[Bindings]
ITaskScheduler->Scheduler

MAC.cfg
[Role]
MAC=lpl.so

[Bindings]
IMXRadio->Radio
ITaskScheduler->Scheduler
IRandom->Random
ITimer->Timer

Beacon.cfg
[Role]
Beacon=bc.so

[Bindings]
IMXRadio->MAC
ISense->TempSense
ITimer->Timer

Figure 2. Sample configuration fragments for the Radio,
MAC and Beacon roles of Figure 1.

1.3 Maintenance of System Integrity
Allowing a software image to be modified in any way

while online promotes very lightweight – and therefore
energy-efficient – system evolution. Without constraints
however it can present significant dangers to the integrity
of a node’s software and can also make development very
difficult. Lorien’s solution is a set of simple integrity rules
which make online software evolution safe and dramatically
simplify development.

In essence these integrity rules guarantee that no compo-
nent X will ever have a required interface connected to a pro-
vided interface of a component Y such that Y does not have
all of its own dependencies satisfied.

This is useful both to X , since it knows an inter-
component call will never fail due to a ‘configuration error’,
and to Y , since it knows that when a function is called on
it there is no need to check whether it is itself sufficiently
connected to its dependencies to service that call.
2 Demonstration

The steps of the demo will be as follows:
1. We use a simple interactive shell application (see Fig-

ure 3) running on a TelosB node to show how Lorien works
in terms of its abstract architectural roles, dependency man-
agement and configuration persistency. We show incremen-
tally adding low level driver components, protocols and ap-
plications, all without system restarts, and demonstrate how
dependencies between components are tracked and safely
and opportunistically satisfied. Powering off the node and
restarting it demonstrates Lorien’s configuration persistency,
where a node always boots back into the configuration it was
last in, including starting all applications that were running.

2. Having demonstrated the principles of lightweight on-
line software evolution we now show over-the-air changes to
a network of battery-powered TelosB nodes, with one node
connected to a host PC as a base station. Each node runs a
system like that in Figure 1 and can receive, install or replace
components as they arrive. We deploy a simple temperature
data gathering application by sending only an SHT11 driver
and application components to the network. The drivers and
application are persistently installed on nodes as they arrive
and start up their functionality as soon as all supporting com-
ponents are present on the system manifest, sending data
back to the base station when this happens.

Figure 3. Sample output.

3. Finally we deploy alongside the temperature applica-
tion two further applications to run concurrently on our net-
work: (i) an application that uses LEDs to indicate in which
direction the highest amount of radio traffic is emanating;
and (ii) a traffic aggregation component that runs on selected
nodes to reduce overall network traffic (and therefore energy
drain). This further demonstrates the safe incremental online
software evolution that our platform promotes.

Besides the guided demo attendees are encouraged to ex-
plore just how much our system can evolve by suggesting
actions to take via the interactive shell. Lorien can be down-
loaded, including all parts of this demo, from [1].
3 Acknowledgments

This work was partially supported by the ICT Programme
of the European Union under contract number ICT-2008-
224460 (WISEBED).
4 References
[1] Download: http://opencomc.sourceforge.net/lorien/.

[2] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny net-
worked sensors. In LCN ’04: Proc. of the 29th Annual
IEEE International Conference on Local Computer Net-
works, pages 455–462. IEEE Computer Society, 2004.

[3] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivas-
tava. A dynamic operating system for sensor nodes. In
MobiSys ’05: Proc. of the 3rd international conference
on Mobile systems, applications, and services, pages
163–176, Seattle, Washington, USA, June 2005.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. SIGOPS Operating Systems Review, 34(5):93–
104, 2000.

[5] B. Porter and G. Coulson. Lorien: A pure dynamic
component-based operating system for wireless sensor
networks. In MidSens ’09: Proc. of the 4th International
Workshop on Middleware Tools, Services and Run-Time
Support for Sensor Networks, pages 7–12, New York,
NY, USA, 2009. ACM.


