
Generalised Repair for Overlay Networks

Barry Porter, François Taı̈ani and Geoff Coulson

Computing Department

Lancaster University, Lancaster, UK

{barry.porter, francois.taiani, geoff}@comp.lancs.ac.uk

Abstract

We present and evaluate a generic approach to the repair

of overlay networks which identifies general principles of

overlay repair and embodies these as a reusable service. At

the heart of our approach is an algorithm that discovers the

extent of a failed section of any type of overlay, and assigns

responsibility to carry out the repair. The repair strategy

itself is ‘pluggable’ and can be tailored to the requirements

of a specific overlay type or instance. Our approach is ef-

ficient in terms of the number of repair-related message ex-

changes it incurs; scalable in that it involves only nodes in

the locality of the failed section of the overlay; and resilient

in that it correctly handles cases in which multiple adjacent

nodes fail simultaneously, and it tolerates new failures that

occur while a repair is underway. The benefits of our ap-

proach are that: (i) it extracts and encapsulates best prac-

tice in repair for overlays; (ii) it simplifies the design and

implementation of new overlays (because repair issues can

be treated orthogonally to basic functionality); and (iii) it

supports tailorable levels of dependability for overlays, in-

cluding pluggable repair strategies.

1. Introduction

Overlay networks [12] are application-level distributed

systems that are architecturally situated between the in-

frastructure network (e.g. the IP layer) and the end-user ap-

plication. They typically offer specialised virtual network

topologies (e.g. trees or rings), or application-specific ser-

vices which are outside the scope of the underlying network

(e.g. application-level multicast or ad-hoc routing). Their

use is increasingly common and the set of overlay types in

use is becoming increasingly diverse [25, 6, 30, 9, 11].

Most overlay networks provide some mechanism for

self-repair so that the loss of nodes does not unduly affect

the overlay’s functioning. Such repair mechanisms are es-

sential, as overlays typically operate in hostile environments

in which nodes run on unstable machines that are subject to

crash or to be switched off. One well-known example of a

repair mechanism is that adopted by the Chord distributed

hash-table (DHT) overlay [27] which redundantly stores

data on multiple nodes, and ensures that requests for data

on lost nodes are redirected to nodes holding replicants. As

another example, the Overcast content-dissemination over-

lay [19] maintains its tree structure in the face of node loss

using a strategy in which child nodes maintain ‘ancestor

lists’ and attempt to locate and attach to a surviving an-

cestor if their current parent fails. As a third example, a

Gnutella-like resource-sharing overlay [28] might recover

from super-node crashes by promoting suitable leaf nodes

to super-node status.

Although these various repair strategies work, there are

three main problems with this ad-hoc, per-overlay approach

to repair. First, there is a lot of re-invention of the wheel,

as overlay designers repeatedly solve the same fundamen-

tal problems. This is particularly true in the DHT field:

many DHTs adopt a similar approach to that of Chord (e.g.

[25, 30, 24]), but modified to fit the precise operation of

the overlay (such as CAN’s n-dimensional coordinate space

[24]). Second, overlays are harder to design than they other-

wise would be given that the repair protocol needs to be em-

bedded in the overlay’s functional behaviour. And third, be-

cause repair is just one of a much wider set of concerns, the

repair approach adopted by overlay designers is often sub-

optimal or not as flexible as might be desired. For example,

one approach to repairing the failed nodes in the tree-based

overlay of figure 1(a) would be to restore nodes 28, 29 and

68 on other hosts. But where it is difficult to find suitable

hosts, an alternative approach, with examples shown in fig-

ure 1 (b) and (c), would be to repair the tree without actually

restoring the failed nodes. As further examples, it may be

useful in some installations to increase or decrease the de-

gree of redundancy in a DHT by deciding whether or not to

restore failed nodes; or, in Gnutella, to proactively migrate

the leaf nodes of a failed super-node to another super-node.

We have therefore designed a generic approach which

offers reusable and flexible building blocks for overlay re-

pair. Our approach eliminates the necessity to reinvent the

c© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or

promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE. This work was published in the proceedings of the IEEE

Symposium on Reliable Distributed Systems (SRDS 2006), Leeds, UK, pp. 132–142.

wheel, simplifies the design of overlays, and provides a flex-

ible basis for the construction of tailorable repair services.

Our design has been guided by the following principles:

Separation of generic and specific aspects of repair. We

separate overlay repair into two parts: a generic part in

which the extent of a failure is detected and delineated;

and a repair specific part in which a repair strategy is

selected and enacted. This separation is motivated by

the desire to support diverse environments and high

degrees of configurability: in this case supporting al-

ternative repair strategies that make different tradeoffs

depending on their deployment environment.

Localised repair. We want only nodes in the locality of a

failed node or failed section to be involved in coordi-

nating its repair. This is essential to guarantee the scal-

ability of our approach. In very large overlays, such as

Internet-scale P2P networks, it would be completely

infeasible to involve centralised services or nodes be-

yond the failure locality.

Aggregated failure handling. Rather than restrict our-

selves to treating individual overlay nodes as the unit

of failure detection and repair, we want our approach

to generalise naturally to deal with failed sections of

overlay, as illustrated in figure 1. This is especially

beneficial where the virtual structure of an overlay cor-

responds somewhat to the underlying physical topol-

ogy, and thus the simultaneous failure of adjacent over-

lay nodes is likely to be relatively common. Prominent

examples are ad-hoc networks, or multicast trees or-

ganised in terms of IP domains.

Figure 1. (a) An overlay with a failed section

(nodes 28, 29 and 68); and (b) and (c), possi-
ble repairs of this failure. Hosts are shown as

squares, and overlay nodes as circles. Phys-

ical network connections are not shown.

The key barrier to achieving generic overlay repair is the

imprecise and dynamic nature of the environment in which

any repair mechanism must operate. In such an environment

failures may stay undetected for a long time, nodes may

hold inconsistent views of which other nodes have failed,

and concurrent repair activities might conflict. Tradition-

ally such problems have been addressed in three ways: (i)

by imposing some form of global coordination (e.g. con-

sensus, atomic broadcast); (ii) by relying on probabilistic

approaches (e.g. gossip); or (iii) by employing pre-defined

repair strategies based on application-specific knowledge

(e.g. tree-specific repair). Unfortunately none of these ap-

proaches sits well with our goals. In particular, global coor-

dination does not scale, probabilistic approaches don’t lend

themselves to consistency, and pre-defined repair strategies

clearly do not meet the need for genericity.

We have therefore taken a fundamentally different tack:

The core of our approach to generic overlay repair is a lo-

calized ‘agreement protocol’ that enables the set of nodes

bordering a failed section of an overlay (i) to discover and

agree on the extent of the failed section; (ii) to agree on

a repair action to be taken; and (iii) to select a coordina-

tor from among themselves to manage the repair. We can

then use this protocol as a common basis for the support

of different repair strategies. In this approach, however, a

pernicious inter-dependency arises between those who are

agreeing (what we call the ‘border set’) and that which they

are agreeing to (i.e. the extent of the failed section, which

implies the constituency of the ‘border set’ itself). We re-

fer to this phenomenon, which is the major characteristic

of the problem space that we address, as the ‘self-defining

constituency problem’1.

In the next section we describe the agreement protocol

and other central algorithms in detail, and also discuss ex-

ample repair strategies. We then empirically evaluate our

approach in section 3 and discuss related work in section 4.

Finally, we offer concluding remarks in section 5.

2. The central algorithms

2.1. System model and assumptions

We consider an overlay as consisting of a potentially

very large number of nodes deployed in an underlying in-

frastructure network (e.g. the Internet). Nodes are iden-

tified using overlay-specific unique identifiers. We assume

that, provided the recipient’s network address is known, any

node can send a message to any other node, and that mes-

sage communication is reliable (i.e., barring network parti-

tions, any message sent is eventually delivered; TCP/IP se-

mantics are sufficient for this). We do not however assume

1Formally, this adds a second parameter voterSet to the classical con-

sensus primitives of propose(value,voterSet) and decide(value,voterSet)

[8]. ‘Self-defining constituency’ refers to the fact that in addition to the

traditional properties of validity, agreement, and termination we require

that agreement be reached only if all non-failed members of voterSet exe-

cute propose(..,voterSet) with the same voterSet value.

any particular timeliness properties for messaging. We also

assume that overlay nodes are related to each other only

through a local ‘neighbouring’ relationship that constitutes

the overlay structure (i.e. no global knowledge is held any-

where in the system).

We assume that nodes may fail at any time, and that

when they do so they do not subsequently interact with the

rest of the overlay (this is ‘fail-stop’, as defined in [2]).

While we allow that nodes may continue to fail as repairs

are ongoing, we assume that such failures do not occur at

such a rate that our algorithm can’t keep up with them.

In terms of infrastructure, we assume the existence of a

distributed backup service from which the state of a failed

node can be obtained by any non-failed node. This state

includes the neighbour links of nodes, repair-specific infor-

mation (discussed in the following sections) and, optionally,

application-specific data. For redundancy, such a service

would likely re-use the same hosts that support the overlay

itself, with one possible implementation being a replication

approach such as that described in [16]. We recognize that

the state returned by a scalable backup service may not be

fully up-to-date, and for simplicity assume that overlays can

cope with this (we note that many current overlays are ex-

plicitly designed to cope with minor inconsistencies due to

the conflicting need to scale to large numbers of nodes).

Finally, we assume the availability of per-node failure

detectors which are used to probe the liveness/ failure status

of nodes. For theoretical correctness, a perfect failure detec-

tor is required (i.e. any failed node is eventually detected,

and non-failed nodes are never suspected of failure—no

false-positives [8]). We discuss the implications of employ-

ing less-than-perfect failure detectors in section 3.

We do not have space in this paper to consider the im-

plementation of the distributed backup and failure detection

services, and leave these as the subject of future work.

2.2. An overview of the three-phase repair
algorithm

The overall repair algorithm is presented in figure 2 and

illustrated in figure 3. The algorithm is executed by each

node p in the overlay, and operates in 3 main phases. Ini-

tially, the algorithm blocks until p’s failure detector informs

it that one of its neighbours has failed. When a failure is de-

tected, p enters phase 1 of the algorithm by executing CON-

STRUCTFAILEDSECTIONVIEW, the job of which is to dis-

cover p’s ‘view’ of the extent of the failed section (i.e. is it

just the one neighbour that has failed, or are there more fail-

ures lurking behind?), and of the set of nodes bordering this

failed section (referred to as border nodes which together

comprise the border set). These two aspects of p’s view are

returned in FSectionp and BNodesp respectively.

Next, node p executes phase 2 (AGREEONVIEW). This

involves negotiation among border nodes to elect one dis-

tinguished border node that will take responsibility for en-

acting the repair (the so-called repair coordinator). This

negotiation involves each border node exchanging its view

with all the other border nodes and, eventually, all the bor-

der nodes coming to a single agreed view. The algorithm

loops around phases 1 and 2 until all nodes have agreed this

common view2. As discussed below, repair-strategy related

information that is to be used in phase 3 may be dissem-

inated during phase 2. This is simply achieved by piggy-

backing the information on phase 2 messages.

Finally, in phase 3 a pluggable repair strategy is exe-

cuted by the chosen repair coordinator. The repair is car-

ried out atomically3 (i.e. within the REPAIRBEGIN and RE-

PAIREND brackets), and a local, per-node, repair log is em-

ployed to help prevent nodes being repaired more than once.

While the repair is being carried out, the other border nodes

wait until either they receive a repairOK message from the

coordinator, or they detect that the coordinator has failed

(which is possible outside the REPAIRBEGIN / REPAIREND

bracket). If the latter happens, the algorithm loops back to

the very beginning.

In the remainder of this section we expand on the above

outline. Due to space limitations, we do not present a proof

of the algorithm’s correctness (i.e. that every failed node

is repaired exactly once); for this, the interested reader is

referred to a complementary report [22].

2.3. Phase 1: Discovery of the extent of the
failed section

A node p enters phase 1 on detecting the failure of a

neighbour, and calls CONSTRUCTFAILEDSECTIONVIEW

to discover the extent of the failed section, which may con-

sist of multiple nodes (see line 5 of figure 2).

CONSTRUCTFAILEDSECTIONVIEW requests from the

distributed backup service the backed-up state of its failed

neighbour, and from this extracts details of its neighbour’s

neighbours. It checks each of these with the failure detector

to determine their status. If any are alive, they are added to

p’s border node set; if any are reported failed, they are added

to p’s ‘failed set’, and their backups are acquired from the

backup service. These nodes’ neighbours are then checked

with the failure detector, and this procedure continues recur-

sively until every connection path from p’s failed neighbour

terminates (transitively) in a node believed to be alive.

As the above view-construction process occurs asyn-

chronously, repair activity from phase 3 of a separate ex-

2As discussed later, the protocol caters for complications that can arise

when multiple instantiations of the protocol concurrently execute in the

same area of the overlay.
3Standard replication techniques can be used here [23] to temporarily

protect the coordinator from failure until the repair is complete—the im-

portant factor is to ensure repair progress is not ‘lost’, as discussed in [22].

1: procedure REPAIRALGORITHMp

2: loop

3: wait for some of p’s neighbours to fail

4: repeat

5: (BNodesp, FSectionp)← CONSTRUCTFAILEDSECTIONVIEW() ⊲ PHASE1

6: Vp[]←AGREEONVIEW(BNodesp, FSectionp) ⊲ PHASE2

7: until Vp[] only contains accept ⊲ Agreement on the failed section

8: coordinator ← SELECTCOORDINATOR(BNodesp, FSectionp)
9: if p = coordinator then ⊲ I am the coordinator

10: REPAIRBEGIN

11: ENACTREPAIR(BNodesp, FSectionp) ⊲ PHASE3

12: SEND 〈coordinator, (BNodesp, FSectionp), repairOK〉 TO all nodes in BNodesp

13: ADDREPAIRTOREPAIRLOG()

14: REJECTVIEWSCONTAININGREPAIREDNODES()

15: REPAIREND

16: else ⊲ I am not the coordinator

17: wait until 〈coordinator, (BNodesp, FSectionp), repairOK〉 received or coordinator ∈ FailedNodesp

18: end if

19: end loop

20: end procedure

Figure 2. Pseudo-code of the repair algorithm when executed by node p

(a) An overlay section

crashes.

(Phase 1) Each border node

that detects a failed neighbour

constructs its own view of the

extent of the failed section.

(Phase 2) Border nodes enter an

agreement protocol to converge on

a common view of the failed sec-

tion and select a repair coordinator.

(Phase 3) The repair coor-

dinator performs the repair

while being monitored by the

remaining border nodes.

Figure 3. The three main phases of our repair algorithm

ecution of the repair algorithm might occur concurrently,

and this might cause the resulting view to refer to overlay

sections that have since been repaired. To avoid this, repair

coordinators log their repairs in a locally maintained log,

and in their own backups. The view construction algorithm

checks the failed section to ensure that no nodes are con-

tained in the repair log of any node in the failed section or

border set. If this occurs, the view is abandoned and view

construction re-starts. Because we assume that nodes stop

failing for long enough for the algorithm to complete, a con-

sistent view will eventually emerge through this process.

If a node p has multiple failed neighbours, it treats each

one as part of a separate failed section, constructing a view

of each failed section using the approach described above.

It then determines a ranking of these different views and

returns only the highest one. This mechanism is important

in avoiding deadlock; this subtle issue is discussed in more

detail later. The ranking relationship4 is also a key factor in

solving the ‘self-defining constituency problem’ discussed

in section 1, as it gives potential constituents a common un-

derstanding of which failed section to address first—thus

ensuring progress in constituency formation.

When CONSTRUCTFAILEDSECTIONVIEW returns, p

has a border set (which always includes itself) and a failed

set, and is ready to enter phase 2 of the algorithm5.

4The ranking relationship is defined as follows: (i) identical views have

the same rank; (ii) the ranking between non-identical views is assessed

based on the number of failed nodes in the view (so the view with the most

nodes is ranked highest); (iii) non-identical views with the same number

of nodes are discriminated using node IDs.
5An obvious optimisation here is, if p’s border set contains only itself,

to move straight to phase 3 since no agreement is needed. Note that for

readability, our pseudo-code does not show such optimisations.

2.4. Phase 2: Agreeing a repair coordinator

In phase 2, a node p attempts to obtain an agreement

with its fellow border nodes on the extent of the failed sec-

tion to be repaired. Contrary to traditional consensus proto-

cols [8], this ‘agreement’ must deal with the self-defining

constituency problem. In particular, as there is no prior

knowledge of which nodes should take part in a particu-

lar agreement, multiple attempts to agree on a view of a

failed section may be active concurrently, and might there-

fore conflict or lead to deadlock.

The agreement protocol is captured in the AGREEON-

VIEW procedure, shown in figure 4. It is inspired by the

consensus algorithm for strong failure detectors presented

by Chandra et al [8], but with suitable modifications to deal

with the problems mentioned above.

Received messages are filtered before being passed to

AGREEONVIEW, so that any views containing nodes that

have already been repaired according to the local repair

log are rejected (as explained below). All other messages

are buffered in a message queue ready to be extracted by

AGREEONVIEW.

In invoking AGREEONVIEW, a node p shows its view of

a failed section (BNodesp, FSectionp) to its fellow bor-

der nodes and attempts to obtain their agreement about this

view. When it terminates, AGREEONVIEW returns a vector

of values Vp[pk] (pk ∈ BNodesp) that contains the “opin-

ions” of p’s fellow border nodes. Vp[pk] = accept if pk has

invoked AGREEONVIEW with exactly the same view as p;

Vp[pk] = reject if pk disagrees with p’s view. Vp[pk] = ⊥
(“bottom”) if pk failed before giving its opinion.

As in [8], the protocol is structured as a series of asyn-

chronous ‘rounds’ in which each border node waits to re-

ceive a message from every other node in its border set be-

fore proceeding to the next round. The use of rounds en-

sures that all nodes in a border set acquire uniform knowl-

edge about the opinions (or failure status) of all other nodes

in that border set. For the rationale behind ‘rounds’ in Chan-

dra et al’s original protocol please see [8].

Each round starts with p sending its view to all

BNodesp, and collecting responses from those nodes

(lines 5-6 of figure 4). The wait statement at line 6 en-

sures that a node only deals with messages that either (i)

agree with its view and are in the same round, or (ii) con-

tain a lower-ranking view, for which a reject message is sent

to the sender. This second condition is needed to arbitrate

between conflicting failed section views that might appear

in cases of ongoing node failure while view construction is

under way. This is illustrated in figure 5. A reject message

is an opinion vector with reject at the sender’s position.

A round completes when messages related to p’s view

have been received from all fellow border nodes that have

not yet been detected as having failed, and have not re-

1: procedure AGREEONVIEWp(BNodesp, FSectionp)

2: Vp[pk]← ⊥ for all pk 6= p

3: Vp[p]← accept

4: for r ← 1 to the size of BNodesp - 1 do

5: SEND 〈r, BNodesp, FSectionp, Vp〉 TO all

BNodesp not rejecting my view or failed

6: wait for a message in round r from each node

I have sent to, unless they are reported failed,

rejecting any lower-ranked view I receive (if

all waited-on nodes have failed, stop waiting)

7: for each received message do

8: put received opinions (6= ⊥) in Vp

9: end for

10: end for

11: end procedure

Figure 4. The pseudo-code of AGREEONVIEW

when executed by node p

jected the proposed view.6 AGREEONVIEW itself termi-

nates at p when all nodes in BNodesp have either (i) exe-

cuted AGREEONVIEW with exactly the same view, (ii) re-

jected this view as described earlier, or (iii) failed before

being able to do either of the above. All nodes that took

part in a given view will see the same values in their opin-

ion vectors, so they can make a deterministic decision based

on the same information.

If a node p obtains an opinion vector that only contains

accept tags, this means that all nodes in BNodesp have

invoked AGREEONVIEW on the same view and thus agree

with p. In this case, p uses SELECTCOORDINATOR (line

8 in figure 2) to select a repair coordinator. If the opinion

vector contains values other than accept, the node returns

to the start of the repeat-until loop on line 4 in figure 2.

SELECTCOORDINATOR deterministically returns a re-

pair coordinator for a view passed as a parameter. Since all

border nodes involved in the same instantiation of the algo-

rithm get the same opinion vector from the agreement pro-

tocol, all nodes agreeing on a common view are guaranteed

to select the same coordinator. Furthermore, if additional

phase 3 related information is piggy-backed on accept tags

in the view-agreement protocol, SELECTCOORDINATOR

can make an optimal choice based on dynamic criteria (e.g.

communication latencies or available resources).

We now discuss how we deal with the complications in-

6A practical optimization between rounds is to ensure that opinions that

nodes are known to already possess are not sent to them again. If a node

sees that all nodes in its border set know everything (after two rounds, in

the best case), and there is no missing information (i.e. ⊥), it can finish

AGREEONVIEW.

(a) An overlay section fails and

is discovered by P. Due to on-

going failures, that failed sec-

tion grows further. Q discov-

ers the full extent of the failed

section. P needs Q’s agreement

to proceed on its view, and vice

versa. There is a potential dead-

lock as P and Q do not run the

same protocol instance.

(b) P contacts Q (line 5 of

figure 4) with its view. P’s

view is ranked lower than

Q’s view, so Q examines

P’s message at line 6 and

subsequently rejects it.

Figure 5. View conflict resolution

Figure 6. (a) A cascading failure, in which

border node S fails. Repair either proceeds
anyway (b), or aborts and views converge to

a larger one (c)

troduced by the occurrence of multiple conflicting failed

section view agreements. Such cases occur when the failure

of one or more border nodes (i.e. cascading failures) inter-

feres with an agreement attempt in progress. Such a case is

shown in figure 6 (a): Nodes P, Q, R and S all have the same

view of the failed section they delineate and have started a

corresponding agreement protocol. S then fails, triggering

the detection of a new and larger failed section by T, which

includes the original failed section. T’s view then competes

with that of the surviving nodes P, Q, and R. The algorithm

must ensure that only one of these views is agreed to ensure

repair consistency (i.e., to avoid multiply-repaired nodes).

There are two possible outcomes from this scenario,

shown in parts (b) and (c) of figure 6. The first outcome is

possible if any of P, Q and R received the opinion “I agree”

from S before S is detected as failed; if this occurs our al-

gorithm ensures that the opinion of S is propagated to all

of P, Q and R, and so their opinion vectors are not missing

any information, and contain only accept tags. In this case

phase 2 completes successfully, and a repair coordinator is

selected as explained earlier. As long as that coordinator

is not S, repair proceeds. Any view received by the coor-

dinator from T is rejected on repair completion (line 14 of

figure 2), allowing T to re-start view construction and dis-

covery of a (now smaller) failed section, which includes the

node U in its border set. This is illustrated in figure 6 (b).

The second outcome is possible either if no opinion is

received from S before it is detected as failed by all of P, Q

and R, or if S is selected as repair coordinator. In both of

these cases, P, Q and R re-start the overall repair algorithm,

and their views will converge with that of T. This possibility

is illustrated in figure 6 (c).

2.5. Phase 3: Enacting the repair

The node that was chosen as repair coordinator performs

the repair at line 11 of figure 2 by calling the procedure EN-

ACTREPAIR. If some of the border nodes have failed after

agreeing on the view, their backup data is updated to reflect

the changes performed by the repair operation (as in figure

6 (b)), thus helping to ensure conflicting view convergence.

When the repair has completed, it is added to the lo-

cal repair log (line 13 of figure 2), and, similarly to pre-

AGREEONVIEW message filtering, the queue of buffered

messages is checked (line 14), and a reject message sent to

the sender of any view message containing nodes that have

just been repaired (removing those messages from the local

node’s buffer).

We now discuss two possible implementations of the

ENACTREPAIR procedure—i.e. pluggable repair strategies.

2.5.1. Strategy 1: Node restoration

‘Node restoration’ simply replaces each failed node with

a new overlay node on an alternative host, injecting the rel-

evant backup data into each new node. Thus, the logical

structure of the overlay does not change. Before entering

phase 2, a border node using the node restoration repair

strategy first locates a suitable alternative host (e.g. one with

sufficient resources) for each node in its failed section view.

For host location we currently rely on a resource discovery

service provided by our Gridkit middleware platform [17].

Selection is also biased by proximity to the border node

itself; i.e. closer hosts will promote faster repairs and faster

interaction of the border node with those restored nodes

when repairs are complete. Because of this proximity bias,

and the different timings of attempts to locate resources by

each border node, each border node is likely to choose dif-

ferently (depending on the diversity of the environment) re-

garding which hosts to use to restore failed nodes. To ar-

bitrate between these different choices, each border node

deterministically ‘scores’ its repair strategy, in terms of its

suitability to the overlay. Scores are also adjusted depend-

ing on the resources of the border node itself such as band-

width and processor speed—attributes that have an imme-

diate effect on repair speed. A border node’s score is sent

to the other border nodes during phase 2 by piggy-backing

it on accept tags, so that by the end of the view agreement

protocol each border node knows the repair score of every

other border node. The border node with the best score is

then selected as the repair coordinator, and enacts its sug-

gested repair strategy in phase 3 (this simply consists of

re-instantiating the failed nodes on the chosen hosts from

backup copies; the bulk of the work has already been done).

In case there is a tie, the border node with the highest ID is

chosen from among the tied nodes.

2.5.2. Strategy 2: Structural adaptation

Unlike the node restoration strategy, ‘structural adapta-

tion’ seeks to change the logical structure of the overlay net-

work to ‘cut out’ the failed nodes, and migrate the service(s)

they were providing to surviving nodes, in an appropriate

way for the specific overlay. Before entering phase 2, each

border node develops a strategy of how it would perform

the adaptation if it were the coordinator. We use a model of

adaptation that can be generically applied to different over-

lays, and is equally applicable to structured overlays like

Chord, loosely structured overlays like multicast trees, and

unstructured overlays like Gnutella. This model is based

on the observation that these overlays can all be structurally

repaired by having the repair coordinator act as a ‘hub’ to

restore the connectivity and service formerly provided by

the failed section, without restoring any of the lost nodes.

An example of this is shown in figure 1, which depicts

a multicast tree overlay. Each border node uses the same

information: There are four live nodes, 17, 31, 33 and 70,

that need to be interconnected in a suitable way. Each bor-

der node bases its repair score on how ‘good’ a hub it would

make to the others. There are therefore four distinct possi-

bilities for post-repair structure depending on which border

node acts as the hub (though only two are shown in figure

1, with nodes 31 (b) or 33 (c) acting as hubs).

Each border node scores itself according to its free re-

sources, and optionally according to input obtained from the

overlay itself (the overlay is given the opportunity to base

the border node’s score on its own metrics of importance).

We have designed a generic API to achieve this, though we

do not have space to discuss it in this paper. Scores are again

included with view agreement protocol accept messages in

phase 2, and the border node with the highest-scoring repair

is selected as the coordinator, enacting its suggested repair

in phase 3. A similar approach can be applied to DHTs like

Chord, where the node with the highest ID (therefore clos-

est to the appropriate new position of recovered DHT data)

has the highest repair score, and in Gnutella 0.6, where the

least heavily loaded super-peer has the highest repair score,

and will take on the leaf-peers of failed super-peers.

3. Evaluation

We now present an evaluation of our repair algorithm.

We first examine (in section 3.1) the operation of the algo-

rithm under normal operating conditions; then (in section

3.2) we additionally consider the complicating factors of

cascading failure and false positives reported by the fail-

ure detector. We employ a combination of simulation and

analysis. For the simulations, we used a home-grown dis-

tributed algorithm simulator [1]: because this is tailored to

overlay simulation it provides us with a higher level of ab-

straction than a network simulator such as ns-2 [4].

3.1. Evaluation under normal conditions

The four major factors in the per-repair overhead of the

repair algorithm are: (i) the number of failure detection

probes incurred; (ii) the number of backup accesses in-

curred when constructing failed section views (phase 1);

(iii) the number of messages incurred to agree on a failed

section and a repair coordinator (phase 2); and (iv) the num-

ber of messages sent to actually enact a repair (phase 3).

To evaluate these four elements, we simulated the re-

pair algorithm on a randomly-connected overlay using sce-

narios with increasing border set sizes and failed section

sizes. None of these scenarios involved cascading failures

(i.e. there were no additional failures once the algorithm

began) and all of them assume no false positives in failure

detection. As mentioned, we discuss the effects of these

complicating factors in section 3.2.

The results in figure 7 show measurements of the first

three of the above-mentioned factors as seen by each indi-

vidual border node (in parts (a), (b) and (c) of the figure,

respectively). We also show the aggregated effect on the

whole border set in parts (a), (b) and (c) of figure 8. In all

these graphs, the x-axes represent either the size of the bor-

der set or the size of the failed section, depending on which

of these factors is most relevant in the particular case; and

the y-axes represent the number of messages incurred. We

do not present results for border sets larger than 25 because

the trends are already clear by this point.

The graphs show that the number of failure detection

probes and agreement messages per border node grow lin-

early with border set size, and that the growth in backup ac-

cesses is linear with failed section size. In terms of the com-

bined overhead incurred by an entire border set, the graphs

Per-node Failure Detection Probes

0

5

10

15

20

25

30

0 5 10 15 20 25

Border set size

N
u

m
b

e
r

o
f

p
ro

b
e
s

|FailedSection| = 5

|FailedSection| = 4

|FailedSection| = 3

|FailedSection| = 2

|FailedSection| = 1

0

1

2

3

4

5

6

0 1 2 3 4 5

Failed section size

B
a
c
k
u

p
 r

e
q

u
e
s
ts

 u
s
e
d

0

10

20

30

40

50

60

0 5 10 15 20 25
Border set size

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s
 s

e
n

t

(a) Failure detection uses (b) Backup requests used (c) Repair agreement messages

Figure 7. Per-border-node overhead during repair

Failure Detection Probes

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25

Border set size

N
u

m
b

e
r

o
f

p
ro

b
e
s

|FailedSection| = 5

|FailedSection| = 4

|FailedSection| = 3

|FailedSection| = 2

|FailedSection| = 1

0

20

40

60

80

100

120

140

0 1 2 3 4 5

Failed section size

B
a
c
k
u

p
 r

e
q

u
e
s
ts

 u
s
e
d

25
20
15
10
9
8
7
6
5
4
3
2

Border set size:

Agreement Messages

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25

Border set size

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s
 s

e
n

t

(a) Failure detection uses (b) Backup requests used (c) Repair agreement messages

Figure 8. Combined overhead at border nodes during repair

in figure 8 show that the number of failure detection probes

and agreement messages grows polynomially with border

set size, and that the growth in backup accesses is linear

with both failed section and border set size.

As can be seen, the algorithm scales nicely in terms of

the load on each border node. Analytically, the number of

failure detection probes incurred by a border node can be

expressed as (b + (f − 2)) (where b is the size of the border

set and f is the number of nodes in failed section)7; the

number of backup requests that occur is simply equal to f ;

and the number of view agreement messages sent in a run

can be expressed8 as (b− 1)× 2.

Turning now to the fourth factor, i.e. repair enactment,

the number of messages involved here is of course depen-

dent on the repair strategy used. For example, structural

adaptation (see section 2.5.2) incurs no extra messages as

non-coordinator nodes simply replace failed links with a

link to the coordinator, and vice versa. Node restoration

7The reason for the ‘-2’ is that the initial notification of a neighbour

failure is not counted as a use of the failure detector during the algorithm’s

execution, and a node does not need to check itself for failure during failed

section view construction.
8This equation is for non-coordinator nodes; the repair coordinator

must additionally send repairOK messages to the border set on repair com-

pletion, and so incurs an additional b−1 messages. Note that this equation

does not apply to the special case of 2 border nodes, for which only 1 mes-

sage is needed for non-coordinator nodes, and 2 for the coordinator.

(see section 2.5.1) typically incurs one extra message per

restored node to instantiate and add state to that node, in

addition to the cost of resource discovery to locate suitable

hosts (not considered in this paper). Generally, these costs

are minor in terms of message overhead compared to those

incurred in phases 1 and 2.

Overall, as the combined cost is a polynomial function

of the size of the border set, the overhead only becomes an

issue with ‘large’ failed sections and highly-connected over-

lays. Moreover, this overhead is completely independent of

the size of the overlay itself.

To put this in context, any failure in the Chord ring-

based overlay would involve just two border nodes (exclud-

ing ‘finger’ nodes, which are refreshed continuously). This

would yield a message count of 9 for a failed section of size

1, and 33 for a failed section of size 5, including failure de-

tection probe usage, backup accesses9, and agreement mes-

sages. Similarly, the failed section in figure 1 would result

in a border set of size 4 (yielding a repair message count of

66). In both cases the repair overhead is independent of the

size of the overlay. While this is also true of Chord, it is

by no means always the case. For example, a tree using a

rejoin-at-root repair strategy [29] would have a repair cost

proportional to the size of the tree.

9In these examples we assume a backup service that incurs 2 messages

to retrieve each backup.

3.2. Evaluation of key complicating factors

In this section we provide an analysis of the important

‘complicating factors’ of (i) cascading failures and (ii) false

positives reported by the failure detector.

3.2.1. Cascading failures

As mentioned, the algorithm accommodates the failure

of border nodes at any time, but assumes that ongoing fail-

ures will stop for long enough for the algorithm to be able

to complete. We now examine the implications of this.

As there are many different points at which border nodes

can fail, this is a complex and difficult issue to analyse. Our

approach is to examine the worst possible case, which oc-

curs when a border node fails at the very start of the algo-

rithm without providing an opinion, as shown in figure 6,

and a full series of rounds must be executed to no effect.

In such cases, the number of additional messages sent by

each border node can be found using equation 1, in which

failedBNodes is the number of failed border nodes in the

border set, and b is the size of the border set.

(b− 1)
︸ ︷︷ ︸

round 1

+

 (b− 2)

︸ ︷︷ ︸

remaining rounds

× ((b− 1)− failedBNodes)
︸ ︷︷ ︸

surviving nodes

(1)

In equation 1 the first term (b − 1) represents the round

1 messages sent by each surviving border node to all

other border nodes (including failed ones, which we as-

sume have not yet been reported failed). The second term,

(b− 2)× ((b − 1)− failedBNodes), represents the mes-

sages sent by each surviving border node to complete all

remaining rounds, with each surviving node sending mes-

sages to all other surviving nodes in each remaining round.

All failed border nodes that do not provide an opinion are

detected as failed in round 1 by all surviving border nodes,

because border nodes must wait in a round to receive a

message from every other border node, unless that node

is reported failed. Using equation 1, the overhead is less

with more failed border nodes within a single border set,

but more—and cumulative—when successive agreement at-

tempts abort due to having failed nodes in their border sets.

Overall, we can summarise by stating that the worst

case ongoing failure scenario will result in a message count

which is an order of magnitude higher than the normal case.

We feel that, given the strong robustness property provided,

and the specific conditions under which it is incurred, this

overhead is acceptable. As an example, in the particular

worst-case scenario shown in figure 6 (c), each surviving

border node incurs an additional cost of only 7 messages:

(4− 1) + ((4 − 2)× (4− 1− 1)).

3.2.2. Failure detection inaccuracy

As with any repair approach, our repair algorithm is ad-

versely affected by false positives, whereby a failure detec-

tor wrongly declares a node as having failed. There are two

cases to consider.

Case 1 involves a node p being told incorrectly that one

or more of its neighbours has failed, going on to construct

a view of the supposed failed section, and proposing this

view to its supposed border set. There are two possible sub-

cases here. The first, and most likely, is that the other sup-

posed border nodes simply disagree with p’s view (because

at least some of their failure detectors did not report a false

positive). Here, the agreement attempt will fail, and the

only adverse effect will be p’s wasted effort. The second

sub-case occurs when the failure detectors of every node in

the supposed border set are all uniformly incorrect such that

they all agree with p. Here, the algorithm will erroneously

proceed to repair non-failed nodes.

Fortunately, we can straightforwardly recover from such

errors by sending a signal to nodes in a failed section prior to

phase 3 (not shown in our pseudo-code). Nodes wrongly as-

sumed to have failed which receive this signal are expected

to respond either by terminating or by rejoining the over-

lay using some overlay-specific mechanism. Thus, although

some wasted effort has been incurred, there is no threat to

the integrity of the overlay from faulty failure detection.

Case 2 is more problematic. This happens when false

positives occur in the following context: (i) multiple con-

current executions of the repair algorithm are in operation

and therefore multiple border sets are concurrently being

formed; and (ii) within each of these concurrent executions

all members of the respective border sets agree on their

failed section views; and (iii) more than one of these border

sets includes one or more of the same nodes in its failed sec-

tion view. This unfortunate combination of circumstances

can lead to multiple repair coordinators operating on the

links of supposed failed nodes without knowledge of each

others activities. This, in turn, can lead to race conditions

which can potentially damage the integrity of the overlay.

To investigate the probabilities of the above two cases

occurring, we simulated simple fully-connected mesh over-

lays of increasing node population, reporting to each node

a percentage of its neighbours as failed when they had not

in fact failed. The results are shown in figure 9. Figure

9 (a) pertains to the first case (sub-case 2), with the x-axis

showing increasing percentages of false positives per node,

and the y-axis the probability of repairing non-failed nodes.

Curves are given for three different mesh sizes. Figure 9

(b) pertains to the second case, giving the minimum false

positive percentage at which any possibility of concurrently

repairing nodes was observed, and the corresponding prob-

ability of this happening. For case 1, the results show that a

0

10

20

30

40

50

60

0 20 40 60 80 100

Percent of neighbours falsely

reported as failed

P
ro

b
a
b

il
it

y
 o

f
re

p
a
ir

in
g

n
o

n
-f

a
il
e
d

 n
o

d
e
s 5 nodes

6 nodes
7 nodes

0

10

20

30

40

50

60

70 75 80 85

Percent of neighbours falsely

reported as failed

P
ro

b
a
b

il
it

y
 o

f
m

u
lt

ip
ly

-

re
p

a
ir

in
g

 n
o

n
-f

a
il
e
d

 n
o

d
e
s

5 nodes
6 nodes
7 nodes

(a) Case 1: probabilities of

repairing non-failed nodes,

with increasing percentages

of false positives and in-

creasing mesh size

(b) Case 2: minimum re-

quired percentage of false

positives to potentially cause

concurrently repaired nodes,

with corresponding probabil-

ity of such repairs occurring

Figure 9. Effects of false positives

very large percentage of per-node false positives is needed

for there to be a significant chance of a non-failed node be-

ing repaired, and, further, that the more highly connected

an overlay is, the less chance there is of this occurring. For

case 2, the results show that the probability of multiple con-

current repairs of a node is very small—much smaller than

that of repairing a non-failed node in case 1.

This initial analysis is encouraging and points to interest-

ing future research regarding the effects of false positives.

4. Related work

Our repair algorithm can be viewed as a combination of

a kind of ad-hoc group formation and ‘preference-based’

leader election [26], with the important difference that the

algorithm attempts to find a stable region of overlay net-

work (failed section) to operate on, and also itself makes

changes to the overlay network by enacting repairs.

Consensus [3, 8] and leader election [18, 26] are both

well-studied fields, but current work does not address

the ‘self-defining constituency’ problem; i.e. the inter-

dependency that arises between those who are agreeing

(the border set) and that which they are agreeing to (the

failed section, and thus constituency of the border set itself).

[7] and [2] address consensus with unknown and uncertain

participants, respectively. Although these works are simi-

lar to the self-defining consistency problem we have intro-

duced, our work is different in that we allow the existence

of competing protocol instances (each promoting its own

constituency), and arbitrate using view ranking.

Generalised failure detection and backup provision (i.e.

redundancy) have also been addressed in the literature: [16]

describes interesting work on providing redundancy gener-

ically in DHTs, irrespective of the structure of the DHT

(such as a ring or n-dimensional coordinate space [24]),

with positive results in terms of the number of messages

required to maintain a given degree of redundancy; and

[31] explores considerations in designing a failure detection

protocol in overlay networks, examining desirable proper-

ties for general failure detection. Both are complementary

to our own work; and indeed the approach described in

[16] could be almost directly plugged-in as our distributed

backup service where the overlay being supported is a DHT.

Our approach might also be viewed as relating to the

group communication paradigm [10]. However, our al-

gorithm fundamentally differs from group communication

systems in the way that groups are formed. Rather than re-

lying on a system wide nameserver or some other means

of discovering a group to join, ‘groups’ in our case are

formed locally and spontaneously as potential border nodes

discover a failed section.

We note that a particular class of “gossip”-style overlays

(e.g. [15]), which use loose, probabilistic and stochastic

rules to self-organize, are not generally suitable to be sup-

ported by our approach. This approach to overlay construc-

tion and maintenance could in fact be seen as the concep-

tual opposite to our own, and indeed recent work has sug-

gested a generalized gossip-like protocol to self-organize

into various different topologies that exist today [20]. Such

approaches provide an interesting alternative to our own.

Our wider approach to overlay network repair has some

similarities to self-* work such as the autonomic computing

initiative [14]. While there is a lot of work in this area such

as self-stabilization [5] and self-optimisation [13], we are

not aware of any that concretely addresses decentralized re-

pair of a distributed system, allowing configurability at the

point of repair based on dynamic criteria.

5. Conclusion

We have proposed a novel approach to the repair of over-

lay networks, which is generically applicable to any over-

lay, and entirely decentralized (i.e. localized to the area of

overlay that has failed). The approach extracts and encap-

sulates best practice in repair for overlays, simplifies the

design and implementation of new overlays (because repair

issues can be treated orthogonally to basic functionality),

and supports tailorable levels of dependability for overlays,

including pluggable repair strategies.

Despite its genericity, the repair algorithm performs well

in common failure scenarios and is indeed comparable with

the ‘native’ repair algorithms used by many specific over-

lays. For example, as shown in section 3.1, it incurs only 9

messages to repair a failed Chord node. Furthermore, our

approach performs almost equally well with a single node

failure or a failed section of overlay, and is robust to further

failures that occur during its ongoing execution.

The described protocols have all been implemented

within a component-based framework that is provided as

part of our Gridkit platform [17] which has explicit support

for overlay deployment. An overview of the architecture of

the implementation, which includes ‘pluggable’ backup and

failure detection services, is given in [21].

In future work, we intend to focus on developing and

defining the precise consistency semantics required from a

decentralized backup service, in order to make further guar-

antees in this important area. In addition, we plan to further

investigate the impact of false positives in failure detection,

the effects of infrastructure network partitions, and the em-

pirical behaviour of our algorithm in a range of overlays in

the context of the above-mentioned Gridkit platform.

References

[1] AgentSpace distributed alg. prototype & evaluation tool.

http://www.comp.lancs.ac.uk/computing/users/porterbf/
[2] Z. Bar-Joseph, I. Keidar, and N. Lynch. Early-delivery dy-

namic atomic broadcast. In Proc. of the 16th International

Symposium on DIStributed Computing (DISC), pages 1–16,

Toulouse, France, 2002.
[3] G. Bracha and S. Toueg. Asynchronous consensus and

broadcast protocols. J. ACM, 32(4):824–840, 1985.
[4] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,

A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,

and H. Yu. Advances in network simulation. Computer,

33(5):59–67, 2000.
[5] R. W. Buskens and R. P. Bianchini, Jr. Self-stabilizing mu-

tual exclusion in the presence of faulty nodes. In FTCS-25:

25th International Symposium on Fault Tolerant Computing

Digest of Papers, pages 144–153, California, 1995.
[6] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.

SCRIBE: A large-scale and decentralized application-level

multicast infrastructure. IEEE Journal on Selected Areas in

communications (JSAC), 2002.
[7] D. Cavin, Y. Sasson, and A. Schiper. Consensus with un-

known participants or fundamental self-organization. In

Third International Conference on Ad hoc Networks and

Wireless (ADHOC-NOW 2004), pages 135–148, Vancouver
[8] T. D. Chandra and S. Toueg. Unreliable failure detectors for

reliable distributed systems. JACM, 43(2):225–267, 1996.
[9] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX: Reli-

able multicast for heterogeneous networks. In INFOCOM,

pages 795–804, Tel Aviv, Israel, March 2000. IEEE.
[10] G. Chockler, I. Keidar, and R. Vitenberg. Group commu-

nication specifications: a comprehensive study. ACM Com-

puting Surveys, 33(4):427–469, 2001.
[11] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:

A distributed anonymous information storage and retrieval

system. Lecture Notes in Computer Science, 2009:46, 2001.
[12] D. Doval and D. O’Mahony. Overlay networks: A scalable

alternative for p2p. IEEE Internet Computing, 7(4):79–82
[13] J. Dowling, E. Curran, R. Cunningham, and V. Cahill. Col-

laborative reinforcement learning of autonomic behaviour.

In Proc. of the 2nd International Workshop on Self-Adaptive

and Autonomic Computing Systems, pages 700–704, 2004.

[14] A. Ganek and T. Corbi. The dawning of the autonomic com-

puting era. IBM Systems Journal, 42:1:5–19, 2003.

[15] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié. SCAMP:

Peer-to-peer lightweight membership service for large-scale

group communication. In Proc. of the 3rd International

workshop on Networked Group Communication, 2001.

[16] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric replica-

tion for structured peer-to-peer systems. In The 3rd Inter-

national Workshop on Databases, Information Systems and

Peer-to-Peer Computing, Trondheim, Norway, July 2005.

[17] P. Grace, G. Coulson, G. Blair, and B. Porter. Deep middle-

ware for the divergent grid. In Proc. of Middleware 2005,

LNCS, volume 3790, pages 334–353

[18] A. Itai and M. Rodeh. Symmetry breaking in distributed net-

works. Information and Computation, 88(1):60–87, 1990.

[19] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,

and J. W. O’Toole, Jr. Overcast: Reliable multicasting with

an overlay network. In Proc. of the Fourth Symposium

on Operating System Design and Implementation (OSDI),

pages 197–212, October 2000.

[20] A. Montresor, M. Jelasity, and O. Babaoglu. Chord on de-

mand. In Proc. of IEEE P2P 2005, pages 87–94

[21] B. Porter, G. Coulson, and D. Hughes. Intelligent depend-

ability services for overlay networks. In Proc. of Distributed

Applications and Interoperable Systems 2006 (DAIS’06),

volume 4025 of LNCS, pages 199–212, Bologna, Italy

[22] B. Porter, F. Taı̈ani, and G. Coulson. Generalizing repair for

overlay networks. Technical Report PTC–06–01, Lancaster

University, 2006.

[23] D. Powell, editor. Delta-4: A Generic Architecture for De-

pendable Distributed Computing. Springer-Verlag, 1991.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content addressable network. Tech-

nical Report TR-00-010, UC Berkeley, Berkeley, CA, 2000.

[25] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-

ized object location, and routing for large-scale peer-to-peer

systems. LNCS, 2218:329, 2001.

[26] S. Singh and J. F. Kurose. Electing “good” leaders. Journal

of Parallel and Distributed Computing, 21:184–201, 1994.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service

for internet applications. In Proc. of the 2001 conference on

applications, technologies, architectures, and protocols for

computer communications, pages 149–160. ACM Press

[28] B. Yang and H. Garcia-Molina. Designing a super-peer net-

work. In Proc. of the 19th International Conference on Data

Engineering, Bangalore, India, March 2003.

[29] M. Yang and Z. Fei. A proactive approach to reconstructing

overlay multicast trees. In IEEE INFOCOM, Hong Kong,

March 2004.

[30] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:

An infrastructure for fault-tolerant wide-area location and

routing. Technical Report UCB/CSD-01-1141, UC Berke-

ley, April 2001.

[31] S. Zhuang, D. Geels, I. Stoica, and R. H. Katz. On failure

detection algorithms in overlay networks. In Proc. of INFO-

COM’05, Miami, FL, USA, March 2005.

