
A Generic Self-Repair Approach for Overlays

Barry Porter, Geoff Coulson, and François Täıani

Computing Department, Lancaster University, Lancaster, UK
(barry.porter,geoff,francois.taiani)@comp.lancs.ac.uk

Abstract. Self-repair is a key area of functionality in overlay networks,
especially as overlays become increasingly widely deployed and relied
upon. Today’s common practice is for each overlay to implement its
own self-repair mechanism. However, apart from leading to duplication
of effort, this practice inhibits choice and flexibility in selecting from
among multiple self-repair mechanisms that make different deployment-
specific trade-offs between dependability and overhead. In this paper,
we present an approach in which overlay networks provide functional
behaviour only, and rely for their self-repair on a generic self-repair ser-
vice. In our previously-published work in this area, we have focused on
the distributed algorithms encapsulated within our self-repair service. In
this paper we focus instead on API and integration issues. In particu-
lar, we show how overlay implementations can interact with our generic
self-repair service using a small and simple API. We concretise the discus-
sion by illustrating the use of this API from within an implementation of
the popular Chord overlay. This involves minimal changes to the imple-
mentation while considerably increasing its available range of self-repair
strategies.

1 Introduction

Overlay networks are quintessential examples of decentralized distributed sys-
tems. They consist of collections of software nodes, usually one per physical host,
which form a logical topology and provide a mutually desired service. Many over-
lays require no managed infrastructure, and are therefore suitable to be deployed
dynamically and on-demand in any physical network.

Self-repair is a key area of functionality in overlay networks, especially as
overlays become increasingly widely deployed and relied upon. Today’s common
practice is for each overlay to implement its own self-repair mechanism. For ex-
ample, Chord [1] is a popular distributed hash table (DHT) overlay that employs
a self-repair mechanism in which each node maintains a list of the next M nodes
following it in a ring structure, and this list is continuously refreshed so that if
a node’s immediate clockwise neighbour fails, the node becomes linked to the
next live node in the list instead. Furthermore, this list can be additionally used
to redundantly store a node’s application-level data in case the node fails. As
another example, Overcast [2] is a tree-based content dissemination overlay that
employs a self-repair mechanism which attempts to ensure that a tree node al-
ways has a ‘backup parent’ in case its current parent fails. This is achieved by

R. Meersman, Z. Tari, P. Herrero et al. (Eds.): OTM Workshops 2006, LNCS 4278, pp. 1490–1499
c© Springer-Verlag Berlin Heidelberg 2006



2 Barry Porter, Geoff Coulson, and François Täıani

having each node maintain a list of its ancestors, so it can choose a replacement
parent from this list if its present parent fails.

But there are drawbacks to this ‘per-overlay’ approach to self repair. The
obvious one is that it leads to duplication of effort. This is especially the case
in situations where many overlay types within a ‘class’ (e.g. DHT overlays)
ultimately use similar self-repair approaches with minor differences to suit the
specifics of the particular overlay. But a more fundamental drawback is that the
approach inhibits choice and flexibility in selecting from among alternative self-
repair mechanisms that make different deployment-specific trade-offs between
dependability and overhead. For example, where resources (e.g. free hosts) are
plentiful, it may be appropriate to recover failed nodes by restoring them on
other hosts. Alternatively, where resources are scarce it may be better to allow
neighbouring nodes to take over the responsibilities of their failed peers.

Motivated by such considerations, we have developed an approach to self-
repair in which overlay networks provide functional behaviour only, and rely
for their self-repair on a generic self-repair service. Thanks to this separation
of concerns, the application developer can be presented with two clear areas of
independent choice: i) which overlay network to use, based on what that overlay is
designed to do and how it achieves it, and ii) how that overlay should defend itself
against node failure, based on the selection of an appropriate dependability/
overhead trade-off, and expressed as easy-to-understand configuration options
of the generic self-repair service.

In this paper we focus on API and integration issues of this approach. In
particular, we show how overlay implementations interact with the generic self-
repair service using a small and simple API. We concretise the discussion by
illustrating the use of this API from within an implementation of the popular
Chord overlay. This is shown to involve minimal changes while considerably
increasing the range of self-repair strategies available to Chord.

In the rest of this paper, we first introduce in section 2 the overall architecture
of our generic self-repair service and its APIs. Then in section 3 we present the
above-mentioned Chord-based case study of the use of the service’s API. Finally,
section 4 discusses related work, and section 5 offers conclusions.

2 The Generic Self-Repair Service and its APIs

Our approach is based on the afore-mentioned separation of concerns, achieved
by encapsulating all overlay self-repair concerns in a generic-but-tailorable self-
repair service. Its design has been guided by the inherently decentralized nature
of the overlays that it supports. Thus, an instance of the service runs on each
applicable host (i.e. hosts that support overlay nodes that want to use the ser-
vice), and the various service instances communicate in a peer-to-peer fashion
to perform their respective functions.

The service comprises three distinct sub-services: i) a distributed backup ser-
vice which takes key overlay state from a node and stores it in a ‘safe’ place (for
example, at another overlay node) in case the node fails; ii) a failure detection



A Generic Self-Repair Approach for Overlays 3

service which checks neighbouring nodes for failure, and informs the recovery
service when a failure occurs; and iii) a recovery service which uses previously
backed-up data from the backup service to make appropriate repairs to the failed
region of overlay. More detail on these is available in the literature [3, 4].

Between the self-repair service and the overlay there exists a two-way generic
API; at one side is an API belonging to the service which permits exposition
and guidance by the overlay with regard to its key state elements, and at the
other side is an API allowing management of the overlay by the service.

The service does not therefore attempt to be fully transparent to the overlay.
Rather, overlay nodes and self-repair service instances cooperate using explicit
two-way interaction, whereby an overlay node calls methods on its local service
instance, and a service instance calls methods on the overlay node it is support-
ing. As will be seen, this ‘dialogue’ is crucial in allowing overlay-specific needs
to be taken into consideration. While allowing this expressiveness, the API is
designed to be as simple as possible, and the relevant interfaces and methods,
discussed in detail below, are shown in figure 1.

Fig. 1. The interfaces used in our architecture: (a) The self-repair service’s main in-
terface, and (b) Interfaces to be implemented by overlay nodes

Because of the ‘two-way’ nature of the API, we need overlay nodes to con-
form to a model and a semantic that is well-understood by the service. To this
end, we require that overlay implementations structure their nodes in terms of
two key abstractions: accessinfos and nodestates. Based on these abstractions,
which are described below, the self-repair service can inspect the characteristics
of each node in terms of both topology and state, and can also adapt the topology
and state as required to carry out repairs. Figure 2 depicts the full ‘model’ of
an overlay node and its interactions with the self-repair service. The below sub-
sections define and discuss accessinfos, nodestates and the interactions between
the service and the overlay.



4 Barry Porter, Geoff Coulson, and François Täıani

Fig. 2. API interactions: (a) An overlay node exposing its accessinfos and nodestates;
and (b) The self-repair service inspecting and adapting these (e.g. at repair time)

Accessinfos Accessinfos are used to expose the connectivity of the node with
its ‘neighbours’ in the target overlay, and also to enable self-repair service in-
stances to communicate with each other. This communication, which is useful
for example to allow the service to send a backup of a node to another node,
is achieved using the overlay’s own topology. In terms of its representation, an
accessinfo is a record that refers to an overlay node and encapsulates sufficient
information to allow a message to be sent to that node. The internals of an ac-
cessinfo are entirely opaque to the self-repair service, and they are assumed to be
‘serializable’ so that they can be marshalled for transport and storage purposes.

When an overlay node first comes into existence, it is expected to provide its
local self-repair service instance with an accessinfo that refers to itself, which
is used to identify and associate various kinds of data with the node. This
is achieved by calling ISelfRepairService.registerNode(Accessinfo nodeRef, IRe-
pairableNode n). This call also provides the self-repair service instance with a
local object reference n on which the service can call overlay-side API methods.

Following this self-advertisement, each node is expected to keep its local
self-repair service instance informed about changes to its ‘local’ topology—i.e.
its connectivity to neighbouring nodes. This is achieved using ISelfRepairSer-
vice.neighbourAdded/Removed(Accessinfo n). With the information passed in
these calls, the self-repair service instance is able to communicate with peer
instances associated with the given neighbours by using IRepairableNode.send-
ToService(Accessinfo n, byte[] message), illustrated in figure 3.

The above deals with basic topology management. However, in some cases
this is not enough because it does not take into account the various topological
‘roles’ that might be played by certain nodes in certain overlays. For example,
ring overlays may comprehend the roles of ‘successor’ and ‘predecessor’, while
tree overlays may comprehend the roles of ‘parent’ and ‘child’. To enable such
semantic information to be expressed by the overlay, accessinfos can be ‘tagged’
by the overlay with arbitrary contextual information. As with accessinfos them-
selves, the nature of this information is opaque to the self-repair service.



A Generic Self-Repair Approach for Overlays 5

Fig. 3. Neighbours exposed by the overlay are used by the service to send data to other
service instances

Nodestates Nodestates are used to encapsulate state that an overlay node is
interested in having restored when the node is recovered. They are optional and
do not need to be used by overlays that don’t need to maintain persistent state.
Like accessinfos, nodestates are assumed to be ‘serializable’, and the internals of
nodestates are opaque to the self-repair service.

Overlay nodes pass nodestates to the self-repair service using ISelfRepairSer-
vice.nodestateAdded/Removed(Nodestate u). The intention is that if there is a
failure, IRepairableNode.addNodestate(Nodestate u) can be called by the self-
repair service on an appropriate target node to restore the data encapsulated
in these nodestates to the overlay (the issue of which node to select for this
restoration is discussed in detail in [3]).

Like the contents of nodestates, the implementation of addNodestate() is
entirely up to the overlay. For example, a DHT overlay node may expose each file
stored locally as an individual nodestate unit, and implement addNodestate() to
map to the DHT store() operation, thereby routing the data to the correct place
in the overlay. Alternatively, a super-peer in a Gnutella-like overlay may store
its resource index as a nodestate, and implement addNodestate() as a ‘merge’
operation to merge any existing local resource index with the provided one.

Repair actions We have demonstrated above how our service can modify the
topology and re-distribute the state of an overlay using a common ‘model’ with
the general IRepairableNode interface. Beyond this base API, we support ad-
ditional repair strategies and overlay input though “progressive disclosure”; a
set of optional interfaces available to the overlay developer wishing to have a
greater understanding of, or level of control over, the service’s operations. This
is exemplified here through the IRestorableNode interface, as shown in figure 1.

This interface is designed to allow failed overlay nodes to be fully restored on
alternate hosts, as opposed to compensatory topology modification. This strat-
egy is useful in Grid-like deployments, where resources may be more plentiful.
Restored nodes must be provided with the ‘node ID’ accessinfo of the failed node
they are replacing (an accessinfo originally used with registerNode()), achieved



6 Barry Porter, Geoff Coulson, and François Täıani

with the IRestorableNode.setNodeID() method. Both of these repair types are
generically applicable to a range of overlay networks; a discussion of this, and of
the mechanics of a safe, decentralized repair approach, is provided in [3].

Following this example, different ‘repair strategies’ can be developed and
used when appropriate, according to the current state of the overlay’s deploy-
ment environment, provided any additional interfaces relating to specific repair
strategies are implemented. Implementing such interfaces allows the overlay to
configure which strategies it would like to support, and indeed further expan-
sion of the overlay-side API can allow arbitrary overlay guidance on how a repair
strategy is performed, achieved by the strategy querying the overlay before repair
enactment. A discussion and evaluation of the benefits of dynamically selecting
different repair strategies at the time of repair is available in [4].

3 Case study

We now provide a detailed view of the overlay developer’s task in making an
overlay compatible with our self-repair service. We use Chord [1] as an example,
as it is well-known and easy to understand without being trivial, though we have
also modified TBCP [5] (an application-level multicast overlay) in a similar way.
The presentation here is based on an actual modification of an existing Chord
prototype [6] as used in our GridKit middleware. We assume some familiarity
with Chord, as we do not have space to discuss it in detail here.

3.1 Instantiating the abstractions

Chord has two main topological characteristics: (i) a ring structure, in which
nodes are linked clockwise and anti-clockwise by ‘successor’ and ‘predecessor’
links respectively; and (ii) the use of per-node ‘finger tables’ that provide O(log
N) routing for any key (as the ring alone would only provide O(N) routing).

For the purposes of this case study we decided to expose the ring structure
in terms of accessinfos, but to model finger tables in terms of nodestates. This
latter choice makes sense because we know that the finger table will be refreshed
shortly after a repair anyway, and so use the finger table data only to speed up
this process. However, it would also have been possible to expose finger tables
in terms of accessinfos by calling neighbourAdded/Removed() as each finger link
changes, with an appropriate ‘finger’ context (see below).

Having made this decision, the next step is to define an accessinfo class as
shown in figure 4. The Chord implementation we modified uses Java RMI as its
communication protocol, and so the RemoteNode reference is a wrapper around
an RMI remote reference (and Chord node ID). Our accessinfo class also has
a comparator method and a ‘context’ variable, which is used to tag the record
with contextual data of ‘successor’, ‘predecessor’ or ‘NodeID’. It is serializable
for network transport and flat storage.

We next create a ‘Chord nodestate’ class to contain a node’s finger table
(simply an array of remote references). This completes our definition of Chord



A Generic Self-Repair Approach for Overlays 7

Fig. 4. Our accessinfo implementation for Chord

under the self-repair service’s model. This is clearly both Chord-specific (with
customized contexts), and implementation-specific (an RMI remote reference is
used as our accessor detail). But again, we stress that our service does not have
(or need) access to the contents of the above classes.

3.2 Using the API

To be repairable by our service, the Chord node implementation must implement
seven methods, shown in figure 5. Our Java service implementation uses Java
Objects to represent accessinfos and notestates, but to simplify the presenta-
tion here we have assumed ‘implicit casting’ to the ChordAccessinfo class (and
corresponding nodestate class ‘StoredFingerTable’) in our code extracts.

Note the receiveServiceMessage() call, shown in figure 5, is a remote method
call, from which the recipient overlay node calls deliverMessage() on its self-
repair service instance to deliver the sent message (as in figure 3 in section 2).

In order to expose the overlay’s topology and state to the service, the over-
lay node implementation also needs to call six methods on the self-repair ser-
vice at various points during its execution. We call registerNode() on startup,
then provide topology information as it becomes available or changes using
neighbourAdded/Removed(). Successor changes occur within Chord’s stabilize()
method, of which we show an extract in figure 6.

Chord’s notify() method was also modified in the same way to expose changes
in the node’s predecessor. In both cases, we decided not to internally store neigh-
bour links as instances of our new ChordAccessinfo class, but instead to create
them only when Chord interacts with our service. This decision was made be-
cause we were modifying an existing overlay, and therefore wished to make as
few changes to it as possible.

Finally, when a Chord node updates its finger table, we again perform a
similar procedure to that shown in figure 6, but this time using the methods



8 Barry Porter, Geoff Coulson, and François Täıani

Fig. 5. Our implementation of the IRepairableNode interface for Chord

Fig. 6. Our modified implementation of the stabilize method in Chord

Fig. 7. Our implementation of setNodeID() for Chord



A Generic Self-Repair Approach for Overlays 9

nodestateAdded/Removed(), where we remove the old finger table from persistent
storage with the service, and add the new one, as nodestate.

3.3 Optional additional implementation

To allow the recovery service to choose at runtime between topology-modifying
and node-restoring repair strategies, we implement the optional interface IRestor-
ableNode, with its setNodeID() method as in figure 7.

We now have a version of Chord which can be maintained by our self-repair
service, so that the service provides all aspects of redundancy, failure detection,
and recovery. We believe that all overlay-side instrumentation is trivial for the
overlay developer, as demonstrated by the code extracts above—in total, our
modified version of Chord is 80 lines (10%) longer than the ‘standard’ version.
We have not altered Chord’s functional behaviour in any way, so it is fully
compatible with existing applications.

Nevertheless, it is additionally possible for such applications, again with mi-
nor modifications, to themselves take advantage of the self-repair service to en-
sure that their data is safe across node failures. To achieve this, applications
simply need to wrap their data as nodestates and call addNodestate() and re-
moveNodestate() on the service as data is added to/removed from the local node.

4 Related work

The notion of “progressive disclosure” has similarities with the “scope control”
property advocated for reflective operating systems by Kiczales and Lamping in
[7], though we also use it to help configure how the recovery service works.

The ‘model’ of an overlay as defined by our self-repair service can be seen
as a kind of ‘reflection’ of an overlay, i.e. a causally-connected meta model of a
running system. Previous work [8] has addressed ‘domain-specific’ reflection of
a system for fault tolerance, but our model has much closer ties to the specific
application (i.e. overlays), rather than general distributed systems.

Our approach could also be viewed as inserting ‘probes’ and ‘actuators’ into
an overlay to monitor and modify it, in a similar way to an autonomic control
loop [9], with our service as the decision-making module.

There has been some other interesting work on making overlay networks
easier to develop, in a similar way to that in which we allow developers to ignore
self-repair concerns. iOverlay [10] and MACEDON [11] both suggest frameworks
in which to develop overlays; in the case of iOverlay, the developer expresses only
the ‘business logic’ of the overlay, and communication and other concerns are
handled by the framework. MACEDON aims to make overlay development easier
by using a specialized language with which to design and evaluate overlays.

While both of these efforts may be valuable in the design process, we have
deliberately aimed at an API which is very close to the way in which over-
lays operate today, which permits both minimal effort in modifying existing
implementations, and a low ‘learning curve’ for new implementations, as we use
standard object-oriented principles.



10 Barry Porter, Geoff Coulson, and François Täıani

5 Conclusion

In this paper we have described how a generic repair approach can be inte-
grated with overlay code in a very practical way. Although we had only space
to discuss one concrete example, we hope the reader can see how the approach
would apply equally to other overlays. The basic approach is to define some core
abstractions (accessinfos and nodestates) and an API based on allowance for
application-specific expressiveness and progressive disclosure. This potentially
simplifies the implementation of new overlays, which no longer need concern
themselves with failure and self-repair issues, and allows many of the wide range
of overlay types that exist today to benefit from our self-repair service, without
losing overlay-specific semantics. This integration opens up a much wider range
of repair strategies than are typically available to off-the-shelf overlays.

By providing such a separation of dependability and functionality, two con-
cerns often particularly closely tied in overlay networks, we enable design choice
based on overlay functionality, and independent dependability property specifi-
cation as appropriate to the deployment through a standard service.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications, ACM Press (2001) 149–160

2. Jannotti, J., et al.: Overcast: Reliable multicasting with an overlay network. In:
Proceedings of the Fourth Symposium on Operating System Design and Imple-
mentation (OSDI). (2000) 197–212

3. Porter, B., Täıani, F., Coulson, G.: Generalized repair for overlay networks. In:
Proceedings of the Symposium on Reliable Distributed Systems (SRDS), Leeds,
UK (2006)

4. Porter, B., Coulson, G., Hughes, D.: Intelligent dependability services for overlay
networks. In: Proceedings of Distributed Applications and Interoperable Systems
2006 (DAIS’06). Volume 4025 of LNCS., Bologna, Italy (2006) 199–212

5. Mathy, L., Canonico, R., Hutchison, D.: An overlay tree building control protocol.
Lecture Notes in Computer Science 2233 (2001) 76

6. https://sourceforge.net/projects/gridkit/: (Gridkit middleware public release)

7. Kiczales, G., Lamping, J.: Operating systems: Why object-oriented? In
Hutchinson, L.F.C., Norman, eds.: the Third International Workshop on Object-
Orientation in Operating Systems, Asheville, North Carolina (1993) 25–30

8. Killijian, M., Fabre, J., Ruiz-Garćıa, J., Shiba, S.: A metaobject protocol for fault-
tolerant CORBA applications. In: 17th IEEE Symposium on Reliable Distributed
Systems (SRDS-17), West Lafayette (USA) (1998) 127–134

9. Ganek, A., Corbi, T.: The dawning of the autonomic computing era. IBM Systems
Journal 42:1 (2003) 5–19

10. Li, B., Guo, J., Wang, M.: iOverlay: A lightweight middleware infrastructure
for overlay application implementations. In: Proceedings of IFIP/ACM/USENIX
Middleware, Toronto, Canada (2004)



A Generic Self-Repair Approach for Overlays 11

11. Rodriguez, A., et al.: Macedon: Methodology for automatically creating, evaluat-
ing, and designing overlay networks. In: Proceedings of the Symposium on Net-
worked Systems Design and Implementation (NSDI), San Francisco, USA (2004)


