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I. INTRODUCTION

Modern computer software comprises tens of millions of
lines of code, created by large development teams in major
multi-year projects. This represents a level of complexity that
is moving beyond the reach of humans to understand.

This growing complexity in software systems has motivated
the development of autonomic computing concepts and prac-
tice. The vision of autonomic computing aims to shift the
burden away from humans and into software itself for tasks
including software installation, maintenance, configuration and
management [1]. A large body of work has now been done
around ‘self-*’ properties towards this vision [2]. However,
existing work either (i) does not consider the design process,
targeting a specific problem in isolation such as parameter
tuning [3], therefore neglecting the broader complexity in soft-
ware construction; or (ii) considers the design process but is
human-centric, relying on architectural or feature models that
retain significant human involvement [4]. While frameworks
have been proposed to infuse software with increasing levels
of autonomy [5], our focus is on having autonomous processes
take a leading role in the task of software design itself.

We argue that a more comprehensive and machine-centric
approach is needed to take the next step towards automation
in software design, development and maintenance. Our work
therefore examines software development as a process, infus-
ing this process with a level of autonomy that seeks to make
software an active member of its own development team.

We present an overview of our framework, highlighting
how autonomous computing can support different stages of
software development, and we demonstrate the accuracy of our
framework in autonomously finding the most suitable software
design at runtime according to specific operating conditions.

II. FRAMEWORK

Our framework considers the major activities in con-
ventional development: specifying requirements; realising
those requirements through implementation; and manag-
ing/maintaining the system in its deployment environment.
In each stage it is designed to interact with human engineers,
but maintains a leading role in the design directions taken.

1) Requirement stage: Requirements are viewed as an ab-
stract intent for the system alongside any constraints over how
that intent is realised, supplied by a developer or end user. This

stage acts as the human interface to the development process:
translating between human language and conceptualisations
and machine-driven decision making and communication. Fol-
lowing appropriate translation, the intent and constraints are
passed to the implementation and deployment stage, described
shortly. Live feedback to the requirements stage may arrive
from the deployment stage, providing high-level summaries
of autonomous design choices that are being made in order to
ascertain whether or not these choices remain in the spirit of
the specified intent and constraints – or potentially indicating
if some constraints are not workable in the deployment.

2) Implementation stage: This stage takes the output of the
requirements stage and generates a working system for deploy-
ment. Our system assembly methodology uses component-
based design to produce many small pieces of behaviour
from which to assemble a system. Our current implementation
relies on humans to do this, producing enough components to
assemble an initial working system. The implementation stage
then receives feedback from the deployment stage in the form
of new component variation requests. These requests indicate
a desirable design point exploration that has been identified in
the running system, complete with the characteristics of the
deployment environment for which this variation is requested
to perform well. The implementation stage then attempts to
generate a component matching these requirements, or else
report that it is impossible to create a component that performs
at the specified level in the given conditions – in which case
the deployment stage will consider other options.

3) Deployment stage: The deployment stage is responsible
for assembling the application architecture, monitoring its
behaviour, exploring the different available design choices in
the operating environment, and learning about the application
behaviour in each detected environment. The deployment stage
leads the design process from actual experience, reporting its
findings higher levels of the framework (including humans).
The deployment stage is our most complete element, compris-
ing an assembly module, a perception module, and a learning
module, plus a knowledge base and a design variant analyser.

The assembly module is responsible for building the
target software system and re-assembling it with alternative
designs when applicable. The perception module observes
and records the characteristics of the deployment environment
and performance of the software. The learning module then
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discovers which assemblies work well in which deployment
environment characteristics based on the monitored data, with
pluggable machine-learning strategies. The knowledge base
stores analysis results of from learning module, including
design rules derived for different environments. Finally, the
design variant analyser examines data held in the knowledge
base and identifies likely high-reward points for the software
which would benefit from component or design variations.
Note that all of these activities are designed to operate on a
live software system deployed in its production environment.

III. CASE STUDY AND EVALUATION

As a case study of machine-augmented software design,
we have applied the deployment stage of our framework
to a web server built with a runtime component model [6]
such that many of its constituent components may have
variations – different implementations of the same interface
which likely have different performance characteristics in
different deployment conditions. Our web server has over 40
different possible architectural designs, including variations in
components that implement cache replacement strategies (e.g.
least frequently used) and compression algorithms (e.g. gzip).
The deployment stage of our framework dynamically discovers
all possible components from which to assemble the system
and, with no prior application-specific knowledge, experiments
with the different assemblies whilst analysing the incoming
requests. This autonomous analysis results in dynamically
created adaptation rules, correlating the appropriate assembly
variant to each detected range of operating conditions.

Our initial evaluation is conducted by exposing all available
architectural designs to a real-life web traffic trace, for which
we used the NASA trace available at [7]. We configure a
client application which makes sequential requests for the
resources listed in the trace. The results shown in Fig. 1
present example performance divergence of four groups of
architectural configurations for part of this trace: one group
that uses compression, one that uses caching, one that uses
both caching and compression, and finally, one group that uses
neither caching nor compression. Note that other parts of the
trace may have these divergent optimals reversed, such that
(for example) architectures with caching or with both caching
and compression perform better than others.

The following graph, in Fig. 2, depicts web server per-
formance under the control of our deployment stage, which
autonomously searches for the optimal design. A baseline
is shown for comparison, indicating the performance of the
(manually determined) best fixed configuration of our web
server for this part of the NASA trace. The graph shows our
deployment stage autonomously experimenting with various
possible assemblies of the web server, drawn from different
combinations of available components, before converging on
an assembly with similar performance to the baseline.
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Fig. 1. The performance of four different fixed architectures with the request
pattern from part of the NASA trace [7].
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Fig. 2. Our learning system in operation over the same part of the NASA
trace [7], with an optimal baseline configuration for comparison.
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