
Demonstrating a Runtime Machine-centric
Emergent Software Architecture Framework

Roberto Rodrigues Filho and Barry Porter
School of Computing and Communications

Lancaster University
Lancaster, UK

Email: {r.rodriguesfilho, b.f.porter}@lancaster.ac.uk

Abstract—Current solutions to self-adaptive software architec-
ture are very human-centric, depending on humans to define
policies or update models that guide software adaptation at
runtime. We argue that this approach is not sufficient to provide
fast responses to continual changes that occur in the current
operating environment. Our approach derives a continually
emergent software architecture by: autonomously exploring all
possible architectures that can be used to realise a given software
system; monitoring that system in execution in terms of its
performance and its operating environment; and identifying
the optimal architecture for each set of operating environment
conditions that are encountered. This demonstration illustrates
our framework in two scenarios: first, we enable participants to
act as the autonomous agent, exploring various possible architec-
tures over time, and manually constructing the rules by which
adaptation will be driven, thereby demonstrating the complexity
of human-centric architectural adaptation; and second, we then
show a fully autonomous system that performs the same tasks
automatically, resulting in emergent software architectures that
are highly responsive to changes in the operating environment.
Both scenarios are visualised through a graphical user interface.

I. INTRODUCTION

Current approaches to architectural self-adaptation rely
heavily on human experts to define adaptation policies that
guide runtime adaptation. This has two problems: firstly it
depends on predictions made by experts at the design phase
which establish a static connection between architectural con-
figurations and expected operating conditions; and secondly
the increasing complexity of modern systems, which contain
a large number of system configurations, make this kind of
static specification increasingly infeasible.

Recent work in architectural self-adaptation, such as [1],
[2], [3] and [4] attempt to provide more dynamic self-adaptive
techniques. Although these techniques help to reduce the need
for making predictions, they still require significant human
involvement in the process of defining models and updating
those models to accommodate new scenarios.

Our approach, by contrast, is completely machine-centric,
removing all burden on humans from the process of defining
adaptation rules or models. In this way, we allow autonomous
and continuous experimentation of architecture variations in
the face of changes in the operating environment, in the system
or in the underlying infrastructure. This human-independent
process allows the system to autonomously gather informa-
tion on different architectures under different conditions and

enables the most suitable architecture to emerge with no
predefined adaptation policies or models. Our framework is
also generic across multiple applications, being oblivious to
a specific application’s features and goals, and requiring no
application-specific domain knowledge.

This paper presents our runtime machine-centric framework
for emergent software architectures. We briefly describe our
implementation and present two interactive demonstration
scenarios, using a web server as an application example.
The framework is able to assemble functional architectural
variations for this web server and autonomously learn which
architecture best suits different patterns of client requests. Our
demo features a highly visual way for participants to both act
as the emergent architecture driver in real time, showing the
volume of decisions that must be made in order to do this;
and also to experience a fully autonomous version of this.

II. DEMONSTRATION

A. Framework

This demonstration features our machine-centric emer-
gent software architecture framework. Our framework is di-
vided into three main modules, called Assembly, Perception
and Learning. The Assembly module is responsible for au-
tonomously composing software architectures based on a pool
of available components; the Perception module is responsible
for collecting performance-related and operating condition-
related data from running components; and the Learning
module is responsible for processing the collected data and es-
tablishing correlations between an architecture’s performance
and the different identified operating environments. To do
this the Learning module operates in two phases, exploration
and exploitation. During exploration the Learning module
experiments with all available architectures in order to collect
data about their constituent components and operating condi-
tions. During exploitation, the best-performing architecture is
selected for the current operating environment.

B. Application

In order to demonstrate the framework in action we use
a web server as an application example. The web server was
created using the Dana programming language [5], which pro-
vides an advanced component-based runtime. Our web server
can be realised from a large pool of available components,



[pre-print version] Appeared at IEEE ICAC 2016 (Demo Session)

Fig. 1. A prototype of the graphical user interface which allows the
exploration of our runtime machine-centric emergent software architecture
framework using a fully functioning web server as an application example.

each of which implement small independent behaviours. These
components can be composed in different ways (selecting
some components from the pool), where each possible com-
position performs differently under different operating envi-
ronment conditions – for example compositions that include
a cache component work best in request patterns with high
repetition, whereas compositions without a cache component
work better in request patterns with high variation.

In total our web server has 42 different possible architec-
tures, which can be autonomously assembled by our emergent
architecture framework. The framework experiments with each
architecture and gathers real-time information from its con-
stituent components, which is then used to learn which archi-
tectures best suit each set of observed operating conditions.

C. Scenarios

The demonstration will use two computers, one acting as a
client and the other acting as a server. On the client computer,
participants will be able to select different client request
patterns from a user interface. Each request pattern creates
different performance characteristics at the server. On the
server computer, participants will see a web-based graphical
user interface to interact with our framework, shown in Fig. 1.

The interface is divided into two sections. The first section,
named “Request Patterns”, is located in the upper part of
the window and presents information on the current operating
environment – in this case we show variations in client request
patterns. The second section, named “Possible Architectures”,
presents a list of available web server architectures, and allows
participants to select two different modes of “Autonomous”
and “Manual”. The bottom part of the interface also contains
two buttons, one which switches between architecture and
performance views, and the other which allows participants to
upload new components to form new architecture variations.

The demonstration then presents two scenarios as follows:
Manual exploration: This scenario allows participants to

manually perform all of the decision making that our frame-
work provides, giving an insight into the level of complexity

involved in this. When operating in this mode, the task of
exploring the available architectures becomes the participant’s
responsibility. The participant can select from the list of avail-
able web server architectures and, for the currently selected
architecture, will see a real-time graph of performance being
drawn. This will show the average response time and other
detailed information in a dialogue window. To fully explore
the design space, the participant must try every possible
architecture to gain an understanding of the performance
characteristics of each one. The participant is then able to
make an informed decision about which architecture best
suits the current deployment environment. When the client
request pattern changes (at the client computer), a new request
pattern will be detected by our framework (shown at the top
of the screen) and all currently gathered information will
be considered invalid for that pattern. The participant will
then need to explore the available architectures again for
this new pattern, to build up enough knowledge to make a
choice (potentially consulting the stored information from the
previous request pattern when deciding which architectures
to explore first). Overall, this scenario allows participants to
actively experience the processes taken by the framework.

Autonomous exploration: In this scenario, the framework
operates in fully autonomous mode, enabling the most suitable
architectures to emerge as client request patterns change. This
part of the demo uses the same graphical interface but shows
the buttons being ‘pressed’ automatically as our framework
explores the design space. Here the participants can observe
the selections as they occur, along with monitored data that
arrives, and adaptation rules that are learned over time for
each identified pattern. Finally, the participants are able to
upload new components to observe the framework learn about
new architecture variations at runtime and watch the system
creating new adaptation rules as a result.

ACKNOWLEDGMENT

Roberto Rodrigues Filho would like to thank his sponsor,
CAPES, Brazil, for the scholarship grant BEX 13292/13-7.
This work was partially supported by the UK’s EPSRC under
research grant number EP/M029603/1.

REFERENCES

[1] A. Elkhodary, N. Esfahani, and S. Malek, “Fusion: A framework for
engineering self-tuning self-adaptive software systems,” in Proceedings of
the Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE ’10. New York, NY, USA: ACM,
2010, pp. 7–16.

[2] D. Menasce, H. Gomaa, S. Malek, and J. Sousa, “SASSY: A Framework
for Self-Architecting Service-Oriented Systems,” Software, IEEE, vol. 28,
no. 6, pp. 78–85, Nov 2011.

[3] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in Pro-
ceedings of the 36th International Conference on Software Engineering.
ACM, 2014, pp. 299–310.

[4] B. Chen, X. Peng, Y. Yu, B. Nuseibeh, and W. Zhao, “Self-adaptation
through incremental generative model transformations at runtime,” in Pro-
ceedings of the 36th International Conference on Software Engineering.
ACM, 2014, pp. 676–687.

[5] B. Porter, “Runtime modularity in complex structures: A component
model for fine grained runtime adaptation,” in Component-Based Software
Engineering. ACM, June 2014, pp. 26–32.

2


