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ABSTRACT 
In order to provide an increasing number of functionalities and 
benefit from sophisticated and application-tailored services from 
the network, distributed applications are led to integrate an ever-
widening range of networking technologies. As these applications 
become more complex, this requirement for ‘network 
heterogeneity’ is becoming a crucial issue in their development. 
Although progress has been made in the networking community in 
addressing such needs through the development of network 
overlays, we claim in this paper that the middleware community 
has been slow to integrate these advances into middleware 
architectures, and, hence, to provide the foundational bedrock for 
heterogeneous distributed applications. In response, we propose 
our ‘open overlays’ framework. This framework, which is part of 
a wider middleware architecture, accommodates ‘overlay plug-
ins’, allows physical nodes to support multiple overlays, supports 
the stacking of overlays to create composite protocols, and adopts 
a declarative approach to configurable deployment and dynamic 
reconfigurability. The framework has been in development for a 
number of years and supports an extensive range of overlay plug-
ins including popular protocols such as Chord and Pastry. We 
report on our experiences with the open overlays framework, 
evaluate it in detail, and illustrate its application in a detailed case 
study of network heterogeneity. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – Distributed applications 

General Terms 
Algorithms, Measurement, Design, Reliability, Experimentation 

Keywords 
WSN, middleware, overlay network, framework 

1. INTRODUCTION 
Modern distributed systems can be characterised by increasing 
levels of heterogeneity. This subsumes both the characteristics of 
the distributed applications and services in question, and the 

environments in which they operate. For example, there are 
increasing demands for applications that are adaptive, autonomic, 
dependable, secure, scalable etc., and also demands for such 
applications to operate in increasingly-varied environments such 
as the fixed internet, mobile and pervasive environments, 
embedded systems, etc.  

In this paper we address a key aspect of heterogeneity that has 
perhaps received less attention than it deserves in the middleware 
community: network heterogeneity. As well as needing to run 
effectively over an ever-increasing range of networking 
technologies (e.g. large-scale fixed networks, mobile ad-hoc 
networks, resource impoverished sensor networks, satellite links, 
etc), distributed applications are increasingly demanding 
sophisticated and application-tailored services from the 
underlying network (e.g. multimedia content distribution, reliable 
multicast, etc.). Furthermore, going beyond this ‘classic’ view of 
heterogeneity, we can discern a growing trend towards ‘extreme’ 
network heterogeneity involving the combining of already 
heterogeneous elements. For example [13] discusses scenarios in 
which sensor networks are tightly integrated with cluster-based 
and internet-based grids. This trend is also evident in the current 
interest in systems of systems [43] and the pervasive grid [27].  

Such factors have driven the networking community to develop 
the concept of network overlays as an approach to the 
virtualisation of the underlying network resource(s). Network 
overlays make it possible to provide a range of different 
networking abstractions including peer-to-peer groups, distributed 
hash tables, application-level multicast, etc. In our view, however, 
this work has not yet been sufficiently embraced and integrated by 
middleware designers (Several overlay frameworks have been 
developed (e.g. [32, 8, 2, 38, 33]) but these suffer from significant 
limitations as discussed in Section 5). We therefore propose the 
concept of open overlays and suggest that it be adopted as a 
central element of contemporary middleware platforms. In our 
conception, open overlays offer a configurable and reconfigurable 
framework that is well integrated into a broader middleware 
architecture, and supports (flexible) virtualization of the network 
resource, the co-existence of multiple (physical or) virtual 
networking abstractions, and potentially support the layering of 
virtual network abstractions to achieve desired network services 
through composition. 

In this paper we present a detailed evaluation of the open overlays 
approach. This builds on extensive experience of using the 
approach in the construction and composition of a variety of 
(often complex) overlays and overlay-based distributed 
applications. The rest of the paper is structured as follows. Section 
2 provides an overview of our open overlays framework, focusing 
on its associated architectural patterns and its support for 
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configuration and reconfiguration. Following this, Section 3 
presents an in-depth case-study of network heterogeneity that 
demonstrates the application of the approach; and Section 4 offers 
an in-depth discussion of the benefits of the framework in 
particular and the open overlays concept in general. Finally, 
Section 5 discusses related work, and Section 6 offers our overall 
conclusions and plans for further research. 

2. THE OPEN OVERLAYS FRAMEWORK 
2.1 Context 
There are essentially three responses to the network heterogeneity 
that we noted above. The first is to progressively add features to 
existing middleware platforms to cope with the increased levels of 
heterogeneity (e.g. extensions to deal with mobile computing). It 
is now well recognized however that this leads to bloat and is not 
a viable long-term solution. The second approach is to create 
specialised per-application-domain middleware platforms (e.g. 
middleware for sensor networks). This approach has yielded some 
success but suffers from significant limitations—particularly in 
terms of achieving interoperability and accommodating the kinds 
of ‘extreme’ heterogeneity (e.g. systems that integrate sensor 
networks and clusters) referred to above. The third approach, 
which we favour, is to offer a configurable framework that can be 
tailored to the needs of a given application and operational 
domain (or domains) while avoiding the shortcomings of the two 
previous approaches. Configurable frameworks also have the 
benefit that they can potentially support run-time reconfiguration, 
and thus address another emerging trend in modern distributed 
systems: dynamicity, and the consequent need for adaptivity. 

In general terms, our research over the past few years has been 
targeting the development of such frameworks through a number 
of projects including Open ORB [4], ReMMoC [22], NetKit [11], 
Gridkit [23], and through our contributions to the RUNES 
middleware [10]. The approach is well documented and builds on 
the complementary nature of lightweight software component 
technology (together with component frameworks) in tandem with 
reflection. Components and component frameworks provide the 
building blocks and associated principled software engineering 
methodology for the construction of middleware, and reflection 
provides the means to inspect and adapt this underlying (explicit) 
structure, and thus additionally render it reconfigurable at runtime 
to address the need for adaptivity. OpenCOM [12] lies at the heart 
of this architectural approach, offering the necessary underlying 
lightweight and reflective component model. 

We have employed this approach in the design of the open 
overlays framework that is the subject of this paper. The 
framework is integrated as part of the wider Gridkit middleware 
architecture [23], which also addresses heterogeneity in other 
dimensions (e.g. in supporting multiple interaction types [24], and 
in dealing with heterogeneous service discovery protocols [9]). 
Aspects of the open overlays framework have previously been 
presented in the literature [23, 24, 25]; but in the following sub-
sections we provide a consolidated overview and update to 
provide context for the substantial evaluation material in Sections 
3 and 4 which forms the main contribution of this paper. 

2.2 Basic architecture of the framework 
The open overlays framework. The open overlays framework 
(as visualised in Figure 1) is an OpenCOM component framework 
that is deployed on each participating node in the distributed 

system. The framework accepts ‘plug-in’ components that offer 
various types of overlay-related behaviour. More specifically, the 
types of components that can be plugged into the framework are 
as follows:  

 
Figure 1. An example configuration of the open overlays 

framework 

 

i) Overlay plug-ins. These are per-node implementations of 
network overlays. For example, Figure 1 shows four overlay 
plug-ins: TBCP [35], Scribe [7], and plug-ins for a Chord 
Distributed Hash Table (DHT) and a Chord Key-Based 
Routing (KBR) overlay [44]. Multiple overlays can operate 
simultaneously in the framework either in mutual isolation 
(cf. TBCP and Scribe in Figure 1) or in a stacking 
relationship (e.g. Scribe and Chord DHT are both stacked 
atop Chord KBR). The overlay plug-in abstraction can be 
applied uniformly throughout the communication stack. For 
example, transport protocols like TCP or UDP are 
represented as overlay plug-ins, and an AODV overlay 
plug-in may be provided in the network layer in a MANET 
environment. Note, we term plug-ins implementing 
transport behaviour (i.e. no routing) as null overlays. Hence, 
the abstraction can even be applied at the level of the 
physical network as demonstrated in Section 3. 

ii)  Interface plug-ins. While overlay plug-ins provide different 
types of behaviour, interface plug-ins capture common API 
patterns that can be shared by multiple overlays. For 
example, following [15], we provide an interface plug-in for 
DHT overlays and another for multicast overlays. The 
indirection provided by interface plug-ins isolates higher-
layer software from the idiosyncrasies of individual overlay 
plug-ins, facilitates application-transparent adaptation (i.e. 
transparently replacing one overlay with another), and 
encourages a principled approach to the development of 
‘families’ of overlays plug-ins, each of which shares a 
common API. 

A pattern for overlay plug-ins. Overlay plug-ins are themselves 
‘mini’ component frameworks (in OpenCOM, component 
frameworks are inherently components), each of which, as shown 
in the left part of Figure 1, is composed of three distinct elements 
(components) that respectively encapsulate the following areas of 
behaviour: 

i) control behaviour, in which the node co-operates with its 
peer control element on other nodes to build and maintain an 



overlay-specific virtual network topology; 

ii)  forwarding behaviour that determines how the overlay will 
route messages over the aforementioned virtual topology;  

iii)  state information that is maintained for the overlay; e.g. 
nearest neighbours. 

Each of these three elements exposes a standard interface, 
IControl, IForward, and IState respectively, which enables the 
free composition of overlays (subject to the configuration 
constraints discussed below). We refer to this three-element 
architecture as the overlay pattern. The motivation for the overlay 
pattern is to achieve flexibility in terms of both configuration and 
dynamic reconfiguration by enabling both control and forwarding 
behaviour to be independently replaced without loss of state 
information. Note also that the overlay pattern can form a basis 
for further decomposition—i.e. each of the three elements can 
itself be a component framework. We consider such an overlay in 
Section 4. 

2.3 Local configuration and reconfiguration 
Local configuration Each per-node instance of the open overlays 
framework is dynamically configured at deploy-time. Possible 
configurations are first set out in terms of a set of pre-installed 
profiles, each of which specifies an available palette of overlay 
and interface plug-ins and a set of basic constraints that specify 
configurations that are recognised by the profile. As examples, we 
have defined profiles for multicast environments and for wireless 
sensor networks (see Section 4, table 6). 

To support configuration, the framework employs both static and 
dynamic meta-data as follows:  

i) static meta-data is attached to the set of overlay plug-ins 
currently available in the profile; this specifies a set of 
configuration rules (see below), constrains which other 
overlay plug-ins may be stacked below the plug-in, and may 
also constrain which interface plug-in the overlay requires; 

ii)  dynamic meta-data is provided by a per-node context engine 
[Capra,03]; this meta-data varies dynamically according to 
the current state of the host node in terms of relevant 
characteristics such as battery life, network connectivity etc. 

The static configuration rules contained within each profile are 
declarative XML-based expressions that specify the configuration 
possibilities supported by the profile. As an example, the 
following configuration rule (expressed in pseudo-code rather 
than XML for the sake of clarity) states that when a ‘multicast’ 
service is requested by the application, and the current network 
context is ‘fixed infrastructure with no IP multicast support’, then 
the TBCP overlay plug-in should be instantiated and configured 
beneath the ‘overlay multicast’ interface plug-in—i.e. to match 
one of the configurations shown in Figure 1: 

 

if (multicast && fixed_infrastructure && 
   !IP_multicast) 
    configure overlay_multicast interface with TBCP 

 

Once the execution of such a rule has resulted in the instantiation 
of a ‘top-level’ overlay plug-in (i.e. TBCP in our example), the 
configuration process continues in a delegated manner which we 
refer to as top-down recursive instantiation. This involves each 
overlay plug-in evaluating its own configuration rules, and on that 

basis selecting, instantiating (or discovering) and configuring a 
further overlay at the next level down. This process continues 
until an overlay plug-in is encountered which has no rules that 
trigger any further instantiation.  

Local reconfiguration Having established a configuration as 
discussed above, it is possible to dynamically reconfigure a node’s 
overlay configuration using the ‘standard’ OpenCOM reflective 
capabilities [12]. For example, one can inspect the current 
composition of components in the framework, replace or add 
components, or add interceptors. However, in line with the usual 
semantics of OpenCOM component frameworks, all such actions 
are subject to ‘veto’ if they would violate the meta-data 
constraints associated with the profile or the current state of the 
framework instance. For example, a constraint of the overlay 
framework is that there must be a null overlay plug-in (e.g. 
transport or physical network component) at the bottom of the 
overlay framework configuration. 

2.4 Distributed deployment & reconfiguration 
While local configuration and reconfiguration rely on static and 
dynamic meta-data available on each node, Distributed 
configuration (i.e. overlay deployment) and reconfiguration both 
rely on generic support provided by OpenCOM’s distributed 
component framework (DCF) facility [25].  

DCFs are coordinated sets of local component framework 
instances that are spread across a set of co-ordinated nodes. For 
example, a DCF-enabled extension of the TBCP overlay plug-in 
from Figure 1 would contain an instance of the TBCP component 
framework for every node participating in the overlay. DCFs 
support dynamic reconfiguration both at a coarse-grained (e.g. 
changing the top-level overlay in use), and a fine-grained level 
(e.g. changing the overlay plug-ins underlying the top-level one, 
or changing one of the elements within an individual overlay 
plug-in).  

 

 
Figure 2. The per-node elements of a Distributed Component 

Framework 

 

The DCF facility is supported by the per-node architecture 
illustrated in Figure 2. Briefly, both deployment and 
reconfiguration are driven by configurators which select and 
apply reconfiguration ‘policies’—i.e. scripts to be executed on 
each DCF node to enact a specified deployment or reconfiguration 
action. The selection of these policies from a policy repository is 
performed similarly to the local configurations/reconfigurations 



 

discussed in section 2.2 (i.e. based on meta-data and configuration 
rules).  

DCFs themselves can be very flexibly configured according to 
application needs. For example, depending on the numbers of 
participating nodes, each DCF may employ a single master 
configurator or per-node distributed configurators. Similarly, they 
may employ either a single or multiple context engine and policy 
database. In addition, the strategies used to achieve consensus in 
the case of distributed configurators, or to achieve quiescence 
before applying a policy script, can all be flexibly configured. We 
also support configurable strategies to post-validate policy 
enactments, ranging from simple but scalable strategies based on 
exceptions to a fully reliable (but not very scalable) transaction 
protocol. Each DCF also maintains a meta-interface (see 
IDistributedMetaArchitecture in figure 2) that enables the atomic 
insertion (deletion) of components into (from) the local 
component framework instances on all the participating nodes. 
The meta-interface also reifies information about the DCF in 
terms of its participating nodes and their current component 
configurations. The communication underlying the meta-interface 
is implemented in terms of a lightweight group membership 
service [21]. 

For safe dynamic reconfiguration it is important to ensure that 
updates do not impact the integrity of the system. Hence, the 
distributed framework must be made safe to adapt, i.e. placing it 
in a quiescent state. We have so far developed a single, centralised 
implementation for deriving a safe state in the distributed 
framework (this is used for the evaluation results in section 3). A 
request to reconfigure the distributed framework from a central 
node generates a request message asking each local framework 
instance to be placed in a quiescent state; this message is 
propagated via gossiping through the meta-group service. Once a 
local framework is in a quiescent state it returns a notification to 
the configurator node. Upon the condition that all members are in 
a quiescent state the reconfiguration can take place. The 
disadvantage of the centralised approach is that it may be too 
resource intensive, and may not scale suitably for large numbers 
of nodes. Additionally, it may not be necessary to place all nodes 
in a safe-state at the same time, or have a single node managing 
the transition to a safe state. Hence, our framework also supports 
selectable approaches to safe-state management that can be 
tailored to the particular style of reconfiguration to be performed 
and the environment that the framework is deployed.  

In sum, in the context of the open overlays framework the DCF is 
used to make coordinated changes across all member nodes of an 
overlay. For example, in a spanning tree overlay plug-in we can in 
one action change the topology of the overlay from a ‘fewest hop’ 
to a ‘shortest path’ configuration by reconfiguring the control 
element of the plug-in on each node (see Section 3). Similarly, we 
might change the routing strategy of a multicast overlay to anycast 
by globally reconfiguring the forwarding elements. 

3. CASE-STUDY BASED EVALUATION 
3.1 Background 
We now discuss the application of the open overlays framework 
in an implemented real-world scenario: wireless sensor network-
based real-time flood forecasting in a river valley in the north west 
of England. This work has previously been published from an 
application perspective [28]; this paper, in contrast, takes a 
quantitative perspective and focuses especially on the dynamic 

reconfigurability capabilities of the open overlays framework in 
the scenario. 

In terms of necessary background, we monitor water depth and 
flow rate in the river by deploying a number of specialised sensor 
nodes along the banks of the river. About 15 nodes are currently 
deployed. The sensor data is collected in real-time and routed 
using a spanning tree topology to one or more designated ‘root’ 
nodes. From there the data is forwarded via GPRS to a prediction 
model that runs on a remote computational cluster. 

Each sensor node (known as ‘GridStix’) comprises a 400MHz 
XScale CPU, 64MB of RAM, 16MB of flash memory, and 
Bluetooth and WiFi networks (the root nodes are also equipped 
with GPRS). Each GridStix is powered by a 4 watt solar array and 
a 12V 10Ah battery. They run Linux 2.6, version 1.4 of the 
JamVM Java virtual machine. Unlike traditional sensor network 
deployments, wherein sensors are merely responsible for relaying 
sensor data to off-site processing facilities, this deployment makes 
significant use of local processing, which is used to support 
computationally complex sensors and to support the local 
prediction of future environmental conditions. This functionality 
necessitates rich support for heterogeneous network technologies. 
On the one hand, networking support must be sufficiently power-
efficient that nodes may operate for extended periods of time. On 
the other hand, applications such as image-based flow prediction 
also require high performing (and implicitly power hungry) 
networking support. 

This need for heterogeneity is further compounded by varying 
resilience requirements: During quiescent periods, when flooding 
is unlikely, data may reach the off-site cluster with a high delay. 
Faults in the network may take a long time to be recovered from, 
since they might only jeopardise the completeness of 
measurement logs. In these periods, low energy consumption is a 
prime requirement to maximise the life-time of the sensor 
network. By contrast, when a flood is imminent, we want the 
network to react quickly, while providing a high degree of 
resilience (e.g. a low sensitivity to disruptions), even if this means 
its energy supplies get depleted much more rapidly.  

To support these heterogeneous application requirements, we have 
implemented a tailored Flood-WSN profile on top of our Overlays 
Framework, which we deployed on each node in the network. In 
the remainder of this section we describe in more details how we 
mapped our application requirements unto this domain-specific 
profile. We also present lines-of-code (LoC) and memory 
footprint measurements to convey an idea of the size and 
complexity incurred by this implementation of this profile. 

In a second part (Sections 3.3 and 3.4), we then discuss the overall 
performance of the resulting system, in terms of latency, 
resilience and power consumption. In particular we look at the 
impact of the reconfigurations made possible by the framework. 
More specifically, the figures we present show that the use of the 
framework has no detrimental impact on the overall performance 
of the flood prediction network, and that the reconfiguration 
mechanisms embedded in the framework cause acceptable 
overheads, two crucial preconditions for the deployment of our 
technology in real applications. 

3.2  The Flood-WSN profile 
Our application supports reconfiguration along two dimensions, 
which both lend themselves to the structures offered by our 
Overlays Framework: 



i) At the physical network level each node can use either 
Bluetooth or WiFi (802.11b). Both technologies have 
extremely different throughput, energy, and range properties 
as summarised in Table 1 (These power draw figures are 
based on Ericsson ROK-104-001 BT modules, and Marvell 
88W8385 WiFi modules. The given range figures were 
measured using strategically deployed directional antennas). 
WiFi provides the highest throughput and longest range, but 
at the cost of energy consumption almost an order of 
magnitude higher than Bluetooth. Typically Bluetooth 
would be used in quiescent conditions, and WiFi in 
imminent flooding situations. 

ii)  At the data routing level data may be routed from the 
sensor nodes to the root node along two different types of 
spanning tree: either using a ‘shortest path’ (SP), or a 
‘fewest hop’ (FH) strategy. Fewest hop (FH) spanning trees 
are optimised to maintain a minimum number of hops 
between any given node and the root. FH trees minimise the 
data loss that occurs due to node failure, but are sub-optimal 
with respect to power consumption. Shortest path (SP) 
spanning trees are optimised to maintain a minimum 
distance in edge weights from any given node to the 
distinguished ‘root’ node; edge weights are derived from the 
power consumption of each pair-wise network link. SP trees 
tend to consume less power than FW trees, but offer poorer 
performance; 

 

Table 1. Relevant characteristics of Bluetooth and WiFi 

 Throughput Power Draw Range 
Bluetooth 786Kbps 0.4W typical  up to 200M  

WiFi 11Mbps 2.9W typical  up to 1.2KM  
 

 

These two levels of optional configuration are reflected in our 
Flood-WSN profile by four options (WiFi, Bluetooth, SP and FP 
spanning trees). As FH and SP overlays differ only in terms of 
their forwarding components, an FH overlay may be implemented 
simply by creating a new forwarding component and re-using the 
state and control components of the SP tree. 

The storage memory footprint (on disk) of the resulting code is 
shown on Table 2. The Flood-WSN profile consumes just 28KB 
of storage memory, and an average of 105KB of dynamic memory 
during execution inclusive of platform specific overheads such as 
the Java virtual machine running on the GridStix. In order to save 
dynamic memory, overlays are instantiated on demand, rather 
than being maintained concurrently. 

 

Table 2. Footprint of the WSN Profile in deployment. 

 Storage Memory 

OpenCOM 52.4KB 
Overlays Framework 23.8KB 
Flood-WSN Profile 28.0KB 

Total 104.2KB 
 

 

The WiFi/Blueetooth capabilities were extremely easy to 
implement as they directly rely on OS-level capabilities. Much 

more interesting for the assessment of the Overlays Framework is 
the implementation of the two types of Spanning Trees topologies, 
whose size and footprints are described in Table 3. The spanning 
tree plug-ins necessitated the creation of four classes on top of the 
underlying framework, one for each element of the overlays 
pattern that we presented in  Section 2.2. Two classes served both 
spanning trees (the control and state components), with two 
differentiated forwarding components were implemented, one 
creating an SP tree, and one an FH tree. Importantly, as Table 3 
shows, this re-use of components between FH and SP trees allows 
an additional tree overlay to be implemented by replacing a single 
component at a storage cost of only 6.5KB. 

 

Table 3. Breakdown of Overlay Memory Footprint 

 Shortest Path (SP) Fewest Hops (FH) 

 Size LoC Size LoC 

Control 7.3KB 124 re-used re-used 

State 2.5KB 24 re-used re-used 

Forward 6.3KB 346 6.5KB 352 
 

3.3 Overall Performance 
We now discuss the overall performance of the resulting 
application, in terms of latency, resilience and power 
consumption. More precisely, we start with a quantitative 
evaluation of the relative costs and benefits of the various options 
identified above as a basis for determining the conditions under 
which the system might best be reconfigured. We first discuss 
how the use of Bluetooth or WiFi influences the characteristics of 
the network, and then move on to compare the two different 
spanning tree configurations (Fewest Hops and Shortest Path). 
The criteria employed include both generic metrics and 
application-specific concerns (see below). The generic metrics are 
as follows:  

i) Latency: We quantify this in terms of the average latency 
with which messages can be relayed from each sensor node 
to the root node (and thence to the back-end flood prediction 
models). 

ii)  Resilience: This is a function of the extent to which the 
failure of a given node reduces the overall connectedness of 
the network. We quantify it as the number of viable routes 
between each node and the root. 

iii)  Power Consumption: Although the GridStix are equipped 
with solar panels, power consumption is still an extremely 
important factor given that flooding occurs in conditions of 
low light intensity! We quantify this as the per-hop power 
consumed during the transmission of a 1KB sensor reading 
from each node to the root. 

In all cases we measure and plot each of these metrics for each 
node in the network. The figures were obtained by empirical 
measurements on a lab version of the deployed system with a 
topology as shown in Figure 3. 



 

   
Figure 3. FH (left) and SP (right) Spanning Trees 

 

 
Figure 4a. Physical Network Latency 

 
Figure 4b. Physical Network Resilience 

 
Figure 4c. Physical Network Power Consumption 

 

The Bluetooth and WiFi configurations were evaluated against 
each other using a common configuration at the Spanning Tree 
level in both cases (we chose an SP configuration that is designed 
to minimise power consumption). In Figure 4a, the ‘latency’ graph 
shows that WiFi incurs significantly less latency than Bluetooth 
(over nodes B-O—i.e. 14 non-root nodes): average reporting 
latency for the latter was 2,912ms, compared to just 38ms with 
WiFi. The ‘resilience’ graph (in Figure 4b) again shows Wifi 
performing significantly better than Bluetooth: the average 
number of routes from each node is 13.2 for Wifi compared to just 
4.4 for Bluetooth. Finally, the ‘power consumption’ graph (in 
Figure 4c) shows that Bluetooth consumes significantly less 
power than the lowest power WiFi configuration. The average 
per-hop power consumption was 0.44 Watts for Bluetooth and 
2.35 Watts for WiFi. 

In summary, and as expected, WiFi offers lower latency and 
higher resilience than the Bluetooth configuration, but consumes 
significantly more power. It is also interesting to note that for each 
of the three properties evaluated there are significant variations 
across the nodes. This implies that a decision as to the optimal 
time at which a reconfiguration operation should be initiated 
ought ideally to be informed by data from multiple nodes in the 
tree. Last but not least, the energy figures are in lines with those 
measured in Table 1 - the power consumed by local computation 
during reconfiguration is negligible compared to the power 
consumed due to network use. 

Spanning Tree configurations The SP and FH overlay network 
configurations were evaluated against each other (using the WiFi 
network configuration in both cases); the results are seen in Figure 
5. 
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Figure 5a. Spanning Tree Latency 

 
Figure 5b. Spanning Tree Resilience  

 
Figure 5c. Spanning Tree Power Consumption  

  

In Figure 5a, the ‘latency’ graph shows FH performing 
significantly better than SP: the average reporting latency with FH 
was 11 milliseconds compared to 28 milliseconds for SP. As 
expected, reporting latency in both cases tends to increase with 
separation from the gateway node (the nodes to the right of the bar 
chart happen to be those that are physically located furthest from 
the root). On the ‘resilience’ graph (in Figure 5b) FH again 
performs significantly better than SP: the average number of 
nodes affected by node failure in FH was 1.29, as compared to 

2.64 for SP. Finally, the ‘power consumption’ graph (in Figure 5c) 
shows that FH consumes significantly more power than SP: the 
average per-hop power consumption was 3.39 Watts for FH and 
2.35 Watts for SP.  

In summary, FH is significantly better than SP in terms of latency 
and resilience, but consumes significantly more power. Again 
there are significant variations from node to node. These 
differences between the FH and SP topologies, and between 
individual nodes tends to show that the main drivers for these 
measurements lay outside of the Overlay Framework and the 
Flood-WSN profile, whose impact is probably negligible 
compared to other influencing factors, such as the lengths of 
routes, and the characteristics of the wireless technologies in use. 

Triggering Reconfiguration: Reconfiguration is supported in our 
sensor network though the Distributed Component Framework 
facility included in the Overlays Framework (see Section 2.4). 
The reconfiguration opportunities arising from the above analysis, 
and the associated ‘triggers’ that drive the system from one 
configuration to another are expressed with declarative 
configuration rules, summarised in Figure 6 in the form of a state 
transition diagram (to avoid excessive presentational complexity, 
the diagram represents a drastically simplified view of the 
implemented system). We also show a representative pseudo-code 
configuration rule relating to one of the transitions (the top one).  

 
Figure 6. Reconfiguration states and triggers (simplified)  

 

As can be seen, the triggers/rules are partly based on the factors of 
latency, resilience and power consumption discussed above; but 
they also include two additional application-specific triggers. The 
first of these, High_Flow, is based on attaching a video camera to 
some of the nodes, pointing this at the river surface, and 
estimating river flow rates by carrying out some simple image 
processing on the resultant images. In the other, Flood_Predicted, 
the trigger is provided by so-called point prediction models [3] 
which provide localised predictions of water depth based on the 
collated readings of depth sensors in the immediate locality. 
Interestingly, the computations underlying High_Flow and 
Flood_Predicted run in a distributed manner on the GridStix 
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nodes themselves; and the open overlays framework is used to 
instantiate additional overlays to handle the coordination involved 
in these distributed computation (cf. the principle of supporting 
multiple co-existing overlays).  

3.4 Evaluating the cost of reconfiguration  
While dynamic DCF-based reconfiguration clearly enables system 
utility to be optimised for varying environmental conditions, there 
is a cost associated with each reconfiguration operation in terms 
of the time taken to perform the reconfiguration, and the power 
consumed by the additional CPU and network activity. These are 
significant costs: time taken reconfiguring is time during which 
the network is out of commission (involving lost sensor readings); 
and consuming additional power clearly increases the risk of 
losing nodes due to power depletion. We therefore carried out 
experiments to evaluate the cost of reconfiguration in our case 
study scenario. We focused on reconfiguration at the Spanning 
Tree level as this avoids network-specific overheads that would 
inevitably impact measurements involving switching between the 
two physical networks.  

 
Figure 7a. Reconfiguration times 

 
Figure 7b. Reconfiguration costs in terms of power 

Figure 7a shows the per-node time required to reconfigure 
between FH and SP spanning trees for the same topology that was 

used in Section 3.2. The average time required was 1878 ms. To 
put this in perspective, at typical sensing rates used in the case 
study this implies an average loss of less than one message (0.36 
messages).  

Figure 7b shows the per-node power costs associated with 
reconfiguration from FH to SP and vice versa (there is a 
difference in cost between the two directions because the DCF 
was configured to employ the current overlay to support 
reconfiguration operations). When reconfiguring from FH to SP, 
network power costs an average of 44.2 milliwatt hours of battery 
life per node. When switching from SP to FH, network power 
costs average 23.5 milliwatt hours. But to put this in perspective, 
the maximum power consumed during overlay reconfiguration for 
any node (46 milliwatt hours) is equivalent to less than 0.05% of 
the battery capacity of a GridStix, which in combination with the 
infrequent nature of reconfiguration is effectively negligible. 

Overall, it can be seen that the power and time overheads of 
reconfiguration are relatively small, particularly compared to the 
potential benefits of optimising the system to current conditions.  

For comparison, and in order to apportion the share of the 
Framework’s mechanisms in reconfiguration costs, average 
overheads for local reconfiguration in the Framework are 
provided in Table 4. This shows that the frameworks 
reconfiguration overhead is quite reasonable, averaging 198 ms, 
and roughly only represents one tenth of the reconfiguration time 
observed on each node, the rest being due to the latency of 
message passing that is required to support distributed 
coordination, and thus outside of the Open Overlays structure. 

 

Table 4. Time overhead of Reconfiguration. 

 Overhead (ms) 
Component Creation 118 
Component Binding 69 
Component Connection 11 

Total 198 
 

3.5 Conclusion 
This case study shows that different level of network 
heterogeneity (here both in wireless technologies, and in overlay 
topologies) can easily be captured into the structures of our 
Overlays-Framework. The decomposition of overlay plug-ins into 
three standard components also encourages reuses, and allows 
developers to support a wide scope of alternative configurations at 
a relatively low cost in terms of memory footprint and 
implementation effort. 

Finally, the performance figures we presented show that the use of 
the framework has no obvious detrimental impact of the overall 
performance of the flood prediction network, and that the 
reconfiguration mechanisms embedded in the framework cause 
acceptable overheads, two crucial preconditions for the 
deployment of our technology in real applications. 

 

4. LESSONS LEARNT AND DISCUSSION 
In this section, we expand on the conclusion of the case-study 
evaluation and we present the lessons we have learnt on the 
benefits of our Open Overlays framework as we applied it to a 
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number of different domains. We discuss qualitatively the 
advantages of the framework in terms of software development, 
and present some more extensive performance figures in terms of 
memory footprint and configuration times for some of the many 
plug-ins we have already implemented. 

We finish this section with a general discussion of the value we 
see in the fundamental notion of overlays as an architectural 
principle for heterogeneous middleware. 

4.1 Benefits of the open overlays framework 
We evaluate the effectiveness of the open overlays framework 
against the following four criteria: 

i) Generality: To what extent can the framework be generally 
applied in terms of different network services deployed in 
different network environments; and how general is the 
overlay pattern in developing overlays? 

ii)  Ease of Use: How easy is it for a developer to use the 
framework, and extend it with new functionality? 

iii)  Configurability: To what extent can the framework be 
configured to meet specific requirements and environments 
(an in-depth evaluation of reconfigurability is provided in 
Section 3)? 

iv) Resource Overhead: Is the overhead incurred to support 
generality, configurability and reconfigurability acceptable? 

Generality As an indicator of generality, we have developed a 
substantial set of overlay plug-ins of which Table 5 lists eight. 
From this list, the generality in terms of the network services 
provided is clear: we cover KBR protocols (e.g. Chord and 
Pastry), a DHT overlay, multicast protocols (e.g. Scribe and 
TBCP), gossip overlays (Scamp), and more specialised overlays 
such as a node failure monitoring overlay, and a spanning tree 
overlay for fan-in routing. Table 5 also shows the configurability 
options offered by each overlay plug-in (in brackets, following the 
descriptions), and illustrates that the framework can be generally 
applied in different network environments (thus addressing 
network heterogeneity): e.g. we can use the Spanning Tree 
overlay in a wireless sensor network (see Section 3); and we can 
choose different multicast protocols for different networks: e.g. 
TBCP for wide area networks, or Scamp for wireless networks.  

These various implementations also provide a strong and 
comprehensive evaluation of the overlay pattern: all eight were 
straightforwardly implemented in terms of the three defined 
elements (i.e. control, state and forward), providing clear evidence 
that the pattern applies generally to different overlay types. 
Moreover, each of the implementations exhibits a clear and 
natural separation of concerns in contrast to many monolithic 
implementations.  

As shown in Figure 8, one of the eight overlays, i.e. Pastry 
KBR, was further decomposed to investigate finer-grained 
configurability and reconfigurability (for example, the control 
element is composed of sub-components corresponding to distinct 
Pastry algorithms, i.e. for joining, leaving, maintenance and 
repair). This decomposition demonstrates that the overlay pattern 
can itself be extended to meet the complexities of individual 
overlays and yet still be supported by the framework. 

 

 
Figure 8. Extending the overlay pattern in the Pastry KBR 

plug-in 

 

Table 5. Descriptions of some implemented overlay plug-ins  

Overlay 
Name 

Description and configurability options 

Chord 
KBR 

A KBR overlay based on Chord [44] (options: 
standard or ‘dependable’ control element; 2 choices 
of supporting overlay) 

DHT Data storage overlay (options: standard or 
‘dependable’ control element; used atop any KBR 
overlay) 

Pastry 
KBR 

A KBR overlay based on Pastry [41] (options: 
supports alternate overlay maintenance algorithms) 

Failure 
Monitor 

Monitoring overlay based on [45]; detects and 
disseminates node failure info (options: used atop 
any gossip overlay) 

SCAMP Scaleable Group Membership overlay with gossip-
based forwarding [21] (options: 2 choices of 
supporting overlay) 

Scribe Multicast based on [7] (options: used atop any KBR 
overlay) 

Spanning 
Tree 

Tree overlay for fan-in routing (options: shortest 
path or fewest hop tree configurations; used atop 
either Wifi or Bluetooth ‘overlays’) 

TBCP Wide area multicast overlay [35] (options: standard 
or ‘dependable’ control element; 2 choices of 
supporting overlay) 

 

Ease of use The framework has been used by over 15 
programmers, from a range of institutions, with different levels of 
programming experience, in a number of system development 
projects (e.g., projects developing middleware for sensor 
networks, resource discovery, and publish-subscribe). Some of 
these programmers contributed as ‘plug-in developers’, some as 
‘framework configurers and users’, and some as both. From 
observation and discussion were able to draw the following 
conclusions:  

i) Plug-in developers generally understood and followed the 
approach implied by the overlay pattern, and to this extent 
their solutions are easily deployable by third party 
application developers. A caveat is that in some cases 
control, forward and state were not completely separated 



 

into distinct components. This is an area where further 
software engineering support might benefit both the plug-in 
developer and the framework configurer/ user. 

ii)  A typical overlay plug-in is developed in a time frame of 2 
to 8 weeks depending on the complexity of the overlay. 

iii)  Framework users found it relatively easy to apply the 
existing profiles of the framework; but in cases where new 
configuration rules needed to be defined, they expressed the 
need for clearer documentation of the set of attributes and 
context values understood by the framework. 

Hence, despite the fact that the evidence is primarily anecdotal, 
and that there are areas of possible improvement, we believe that 
it is reasonably safe to conclude that third parties can use the 
framework with relative ease.  

Configurability To measure the extent of the configurability of 
the framework we calculated the numbers of possible 
configurations in each of four profiles (i.e. an ‘empty’ profile 
consisting of only the framework itself, a ‘WSN’ profile for 
wireless sensor network environments, a ‘multicast’ profile for 
multicast overlays, and a ‘full’ profile containing all of the 
foregoing; see Table 6). The numbers, which are summarised in 
the rightmost column of Table 6, result from an exhaustive 
enumeration of all the configurations reachable via the ‘top-down 
recursive instantiation’ process described in Section 2.3, applied 
to the set of plug-ins available in each profile (for example, TBCP 
can be configured with either a standard or a ‘dependable’ control 
element, and it can be layered over TCP and UDP transport 
‘overlays’ and thus yields 4 configurations at its level). The results 
show that the more complex and well-populated profiles support a 
very large number of possible configurations; e.g. the ‘full’ profile 
has 26,999; this does not mean that programmers must write 
27,000 rules, rather the approximately 30 rules for the full profile 
combine to offer many potential configurations. But, more 
importantly, because of the top-down recursive instantiation 
process, all of these configurations are meaningful. This is 
because the architecture of the framework disallows invalid 
instantiations. This can be compared to other configurable toolkits 
such as Ensemble [46] or JGroups (www.jgroups.org) which, 
despite supporting millions of combinations, offer a much smaller 
number that are actually useful (because these use event-based 
component bindings that allows components to be connected to 
any other in any order).  

Furthermore, the overlay pattern contributes significantly to the 
configurability of the framework by supporting fine-grained 
configuration of individual overlays. Consider, for example, a 
Gnutella implementation with either a random-walk-based, or a 
flooding-based forwarder; or a tree overlay with a control element 
that either contains or doesn’t contain a self-repair algorithm. This 
applies equally when the overlay pattern is decomposed. For 
example, our Pastry example above supports two alternative 
implementations of the maintenance sub-component: one version, 
which is based on the original Pastry algorithm, employs frequent 
leaf set broadcasts over TCP connections; the other employs 
UDP-based keep-alive messages to monitor the state of its leaf set. 
The latter algorithm is less robust to network wide failure or 
malicious attack, but generates far fewer network messages. 

Resource overhead To assess the price paid for its generality, 
ease-of-use and configurability, we quantified the resource 
overhead incurred by the open overlays framework in three 
experiments. All of these employed components from Gridkit 1.5/ 

OpenCOM v1.3.5 (available from http://gridkit.sourceforge.net), 
executing on a Java 1.5.0.10 virtual machine on a networked 
workstation with a 3.0 GHz Pentium 4 processor, 1 Gbyte of 
RAM and running Windows XP.  

The first experiment (see Table 6) investigated the static storage 
footprint costs of each profile; i.e. the disk space required to store 
the framework, components and configuration rules. This measure 
is important as it illustrates the cost of storing not only a starting 
configuration but also any reconfigurations that may subsequently 
be applied. It can be seen from Table 6 that the base framework 
requires 60K before any plug-ins are added. Note that the 
configuration rules take a lot of storage (usually at least 2KBytes) 
because they are coded in XML. A more efficient representation 
might be better for profiles that are both complex and designed to 
be applied in resource-scarce environments.  

Table 6. Configurability results and overheads for framework 
profiles 

Profile No. 
plug-
ins 

No. 
config. 
rules 

Disk mem. 
for config. 
rules (KB) 

Disk mem 
for plug-
ins (KB) 

Total No. of 
configs 
available 

Empty 0 0 0 60 1 

WSN 7 6 16 146 4 

Multicast 21 19 59 169 89 

Full 40 31 87 252 26,999 

 

Table 7. Performance times and dynamic memory costs of 
typical configurations 

Configuration 
Name 

#plug-
ins 

#Conns Profile Config. 
time (ms) 

Dynamic 
mem. (KB) 

Empty 0 0 Full N/A 10,448 

Empty 0 0 Sensor N/A 8,352 

Spanning tree 5 12 Sensor 191 11,452 

Spanning tree 5 12 Full 193 15,264 

TBCP 6 12 Full 211 15,144 

SCAMP 5 9 Full 152 13,708 

Scribe/KBR 9 27 Full 486 16,652 

Scribe + TBCP 13 39 Full 592 16,972 

TBCP+SCAMP 10 21 Full 281 15,308 

 

In the second experiment (see Table 7) , we evaluated dynamic 
memory overhead by measuring the RAM footprint of overlay 
plug-ins while they were in operation (i.e. joined to a running 
overlay). We can see from Table 7 that the basic framework with 
no plug-ins is responsible for a high percentage of the overall 
footprint (65% on average; note, however, that this figure includes 
6,392 Kbytes for the JVM and 600 KBytes for the OpenCOM 
kernel). We can again reduce overhead in a given deployment 
through the profiling mechanism (different profiles will have 
different numbers of configuration rules in memory). More 
complex configurations, e.g. the layering of Scribe over a Chord 
KBR, or TBCP and Scamp deployed in parallel, obviously 
increases the footprint size, but by a small margin, e.g. adding 
Scamp to TBCP results in a 164 Kbytes increase. 



Finally, the third experiment (again, see Table 7) investigated 
configuration performance by measuring the time needed to 
configure new plug-ins based on a sample of configurations from 
the different profiles (e.g. TBCP in the full profile, etc.). While it 
is clear that configuration performance is largely tied to the 
complexity of the configuration in terms of the numbers of 
configuration rules and plug-ins involved, and the number of 
inter-component connections etc., the overall cost of configuration 
(including rule evaluation and component initialisation) is largely 
negligible compared to time for a node to join an overlay (e.g. 
Pastry averages 5 to 10 seconds for node joins). The costs of 
(DCF-based) distributed configuration (i.e. overlay deployment) 
need not be much more costly than this depending on the protocol 
used (e.g. Scamp [21]). 

4.2 Assessing the open overlays concept 
To evaluate the open overlays concept, we examine how 
successful we have been in achieving the desired properties of 
virtualisation of the network resource, co-existence of overlays, 
and layering of overlays to compose network services. In terms of 
virtualisation, Section 4.1 has illustrated the range of overlays that 
can be virtualised by common interfaces, e.g. multicast and DHT 
network resources. These have then been utilised to build a wide 
range of higher level middleware services, e.g. publish-subscribe, 
group middleware [24] and sensor middleware (see Section 3) that 
are independent of the network service; i.e. the middleware can be 
deployed in different networked environments without 
modification. This work has demonstrated that virtualisation is 
indeed a powerful concept when incorporated within an overall 
(configurable and reconfigurable) middleware architecture. This is 
also something that is quite unique in that existing middleware 
platforms/ paradigms do not yet support network virtualisation.  

In terms of co-existence, our experience shows that i) overlays can 
be deployed in parallel, ii) this is indeed a useful service to offer, 
and iii) the overheads of co-existence are reasonable. This is best 
illustrated by the sensor network scenario in Section 3, which 
utilises three separate overlays. One outstanding issue is the 
management of co-existence, in particular in terms of QoS 
properties. We are currently investigating the potential role of the 
work by Cooper [8] in addressing this problem. Finally, in terms 
of layering we have shown that relevant overlays can usefully be 
stacked on top of each other, e.g. the Scribe overlay (or the DHT) 
can be stacked on top of either Pastry or Chord. Similarly, in the 
scenario in Section 3 we layer a Spanning Tree overlay on top of 
either Bluetooth or 802.11b networks. The layering process is 
guided by top-down recursive instantiation and the use of uniform 
interfaces, and promotes the reuse of lower-level overlay plug-ins. 

5. RELATED WORK 
Specialised middleware As mentioned in the introduction, one 
approach to dealing with heterogeneity is to develop a series of 
specialist middleware platforms for particular domains of 
operation. This approach has been most prevalent in the mobile 
computing domain, with a wide variety of platforms emerging 
including: context-aware and adaptive technologies [6, 37]; 
particular interaction paradigms [16, 14]; and more specific 
techniques to deal with disconnection [29]. Some interesting 
techniques have also emerged to deal with heterogeneity in 
service discovery platforms, including the ReMMoC platform 
from Lancaster [22] and the INDISS work at INRIA [5]. 
Specialist middleware technologies have also emerged in areas 

such as distributed multimedia [47, 17] and grid computing [19, 
20]. 

There is currently strong interest in middleware for sensor 
networks. This is a relatively new development building on the 
early experiences with operating systems in this area. Middleware 
approaches for wireless sensor networks seek to provide abstract 
programming models that offer a more global distributed systems 
management perspective, often enabling multiple applications to 
co-exist and share the underlying sensor infrastructure. A good 
survey of middleware for sensor networks can be found in [26], 
which includes a taxonomy for sensor middleware featuring 
database-inspired approaches, tuple-space approaches and event-
based approaches as important sub-classes. 

It is clear that significant advances have been made in terms of 
specialist techniques for particular environmental or application 
domains. Despite these advances, though, the specialist 
middleware approach has a number of very significant limitations. 
In particular, these solutions remain narrow in scope and do not 
help with problems such as interoperability with other domains. In 
addition, they are all developed independently of each other and 
there is no support for the re-use of software in other domains, i.e. 
there is no common architectural framework.  

Configurable and reconfigurable middleware There has been 
considerable interest over the last decade in techniques that 
support configurability and reconfigurability in middleware. Such 
techniques typically rely on underlying reflective support 
including both structural and behavioral reflection. Examples of 
key reflective middleware platforms include the work at Lancaster 
mentioned above, the families of platforms developed at the 
University of Illinois at Urbana Champaign [30, 39], ExORB [40], 
Arctic Beans [1] and RAPIDWare [42]. This paper follows this 
general approach and reflection lies at the heart of our proposal 
for open overlays.  

Other researchers are investigating the potential role of aspect-
oriented programming in supporting configurable (and in some 
cases reconfigurable) middleware platforms [48, 31]. This is in 
many ways complementary to reflective middleware, seeking 
higher level aspect-oriented constructs to express the weaving of 
cross-cutting concerns in middleware. Indeed, some 
implementations in this area build on top of reflective middleware 
technology [18]. 

Overlay Frameworks As mentioned in the introduction, the 
networking community has been carrying out a significant volume 
of research directed towards the development of network overlays. 
However, most of this research has been targeted towards the 
implementation of application specific protocols such as peer-to-
peer substrates or multicast solutions. In this section, we focus on 
the smaller number of initiatives focusing on middleware 
frameworks to support overlay software. 

iOverlays [32] was one of the earliest attempts to define a 
framework for the support of overlay networks. Essentially, 
iOverlays is low-level software cross-connect that forwards 
messages according to a script that embodies the semantics of a 
particular overlay. ODIN-S [8] also provides a framework for 
overlay development, with an emphasis on managing resources 
for overlays that share common nodes, i.e. co-existent overlays. 
As such this work is strongly complementary to ours. [34] also 
explores the co-existence of multiple overlay networks across 
nodes, in particular demonstrating that the maintenance and 
deployment of one overlay (in this case Pastry) can utilise the 



 

behaviour of another (a gossip protocol) to improve its operation. 
Both these systems illustrate use-cases that can be generally 
developed using our open overlays framework. 

Other solutions target the declarative description of overlay 
networks and the subsequent automatic generation of code to 
implement the desired virtual network abstraction (cf. model-
driven engineering) [2, 38, 33]. This is an interesting approach to 
managing the complexity of configurable middleware. The above 
solutions focus almost entirely on configuring overlay networks, 
i.e. on tool support for the generation of a given overlay style. 
There is little or no work on the subsequent management of 
overlays, specifically reconfiguration as context changes. In 
addition, all of the above are stand-alone toolkits and are not 
integrated into broader middleware architectures. We 
acknowledge that currently our framework is not as declarative as 
these approaches in that low-level overlay code (e.g. in Java or 
C++) must be created first before being plugged into our 
framework. However, we do believe the two approaches are 
complementary and we are investigating model-driven approaches 
for generating code to insert into the open overlays framework. 

6. CONCLUSIONS AND FUTURE WORK 
We have presented and evaluated our concept of open overlays 
and its associated framework—a framework that is designed to 
comprehensively address the ‘network heterogeneity’ problem in 
the context of middleware architecture. In our evaluation of the 
open overlays concept, we have argued for the usefulness of 
network virtualisation in a middleware context, the usefulness of 
supporting multiple overlays per node and the stacking of 
overlays, and the benefits of structuring overlay plug-ins 
according to the overlay pattern. In terms of the framework-
specific evaluation, we have focused on the framework’s 
generality, its ease of use for both plug-in developers and 
configurers/ users, the practicability of its configuration and 
reconfiguration capabilities (employing top-down recursive 
instantiation, declarative rule-based configuration and 
reconfiguration, and distributed deployment and reconfiguration), 
and the fact that it incurs only a modest resource overhead. 
Furthermore, we have presented a detailed case study of network 
heterogeneity and at the same time demonstrated the use of our 
framework in a challenging, WSN-based, application context in 
supporting multiple overlays, and dynamically reconfiguring them 
according to current environmental conditions. 

In current work, we are integrating an overlay-independent 
dependability subsystem [36] into the framework. This can 
significantly simplify the ‘control’ element of participating 
overlay plug-ins by factoring out the task of overlay maintenance 
and delegating this to the framework. We also have a PhD project 
that is using the open overlays framework as the basis of a sub-
framework specialising in ad-hoc routing protocols in MANETs.  

In future work, we are particularly interested in supporting 
challenging scenarios involving ‘extreme’ network heterogeneity 
of the type discussed in the introduction (e.g. involving systems 
that span a sensor network, a fixed grid environment, and a 
loosely-connected MANET). This is a fundamentally challenging 
issue in that it is not yet understood even how to design overlays 
that can successfully span such environments, let alone an 
overarching framework. In addressing this challenge, we do not 
foresee major problems in applying the basic tenets of our 
framework on individual nodes; it will be the distributed 
deployment and reconfiguration issues involving DCFs that will 

present the major challenges (e.g. making appropriate choices in 
terms of distributed versus centralised configurators, quiescence 
and validation algorithms, membership protocols, etc.). 

More widely, we believe that users of mainstream middleware 
will increasingly demand overlay support, and so the challenge 
will arise of how best to integrate the open overlays concept, or a 
variant of it, in such platforms. We hope that the experiences 
reported in this paper will be of relevance in this.  
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