
Experiences with Open Overlays: A Middleware Approach
to Network Heterogeneity

Paul Grace, Danny Hughes, Barry Porter, Gordon S. Blair, Geoff Coulson, Francois Taiani
Computing Department, Lancaster University,

Lancaster, UK.

{gracep, danny, barry.porter, gordon, geoff, f.taiani}@comp.lancs.ac.uk

ABSTRACT
In order to provide an increasing number of functionalities and
benefit from sophisticated and application-tailored services from
the network, distributed applications are led to integrate an ever-
widening range of networking technologies. As these applications
become more complex, this requirement for ‘network
heterogeneity’ is becoming a crucial issue in their development.
Although progress has been made in the networking community in
addressing such needs through the development of network
overlays, we claim in this paper that the middleware community
has been slow to integrate these advances into middleware
architectures, and, hence, to provide the foundational bedrock for
heterogeneous distributed applications. In response, we propose
our ‘open overlays’ framework. This framework, which is part of
a wider middleware architecture, accommodates ‘overlay plug-
ins’, allows physical nodes to support multiple overlays, supports
the stacking of overlays to create composite protocols, and adopts
a declarative approach to configurable deployment and dynamic
reconfigurability. The framework has been in development for a
number of years and supports an extensive range of overlay plug-
ins including popular protocols such as Chord and Pastry. We
report on our experiences with the open overlays framework,
evaluate it in detail, and illustrate its application in a detailed case
study of network heterogeneity.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed applications

General Terms
Algorithms, Measurement, Design, Reliability, Experimentation

Keywords
WSN, middleware, overlay network, framework

1. INTRODUCTION
Modern distributed systems can be characterised by increasing
levels of heterogeneity. This subsumes both the characteristics of
the distributed applications and services in question, and the

environments in which they operate. For example, there are
increasing demands for applications that are adaptive, autonomic,
dependable, secure, scalable etc., and also demands for such
applications to operate in increasingly-varied environments such
as the fixed internet, mobile and pervasive environments,
embedded systems, etc.

In this paper we address a key aspect of heterogeneity that has
perhaps received less attention than it deserves in the middleware
community: network heterogeneity. As well as needing to run
effectively over an ever-increasing range of networking
technologies (e.g. large-scale fixed networks, mobile ad-hoc
networks, resource impoverished sensor networks, satellite links,
etc), distributed applications are increasingly demanding
sophisticated and application-tailored services from the
underlying network (e.g. multimedia content distribution, reliable
multicast, etc.). Furthermore, going beyond this ‘classic’ view of
heterogeneity, we can discern a growing trend towards ‘extreme’
network heterogeneity involving the combining of already
heterogeneous elements. For example [13] discusses scenarios in
which sensor networks are tightly integrated with cluster-based
and internet-based grids. This trend is also evident in the current
interest in systems of systems [43] and the pervasive grid [27].

Such factors have driven the networking community to develop
the concept of network overlays as an approach to the
virtualisation of the underlying network resource(s). Network
overlays make it possible to provide a range of different
networking abstractions including peer-to-peer groups, distributed
hash tables, application-level multicast, etc. In our view, however,
this work has not yet been sufficiently embraced and integrated by
middleware designers (Several overlay frameworks have been
developed (e.g. [32, 8, 2, 38, 33]) but these suffer from significant
limitations as discussed in Section 5). We therefore propose the
concept of open overlays and suggest that it be adopted as a
central element of contemporary middleware platforms. In our
conception, open overlays offer a configurable and reconfigurable
framework that is well integrated into a broader middleware
architecture, and supports (flexible) virtualization of the network
resource, the co-existence of multiple (physical or) virtual
networking abstractions, and potentially support the layering of
virtual network abstractions to achieve desired network services
through composition.

In this paper we present a detailed evaluation of the open overlays
approach. This builds on extensive experience of using the
approach in the construction and composition of a variety of
(often complex) overlays and overlay-based distributed
applications. The rest of the paper is structured as follows. Section
2 provides an overview of our open overlays framework, focusing
on its associated architectural patterns and its support for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04...$5.00.

configuration and reconfiguration. Following this, Section 3
presents an in-depth case-study of network heterogeneity that
demonstrates the application of the approach; and Section 4 offers
an in-depth discussion of the benefits of the framework in
particular and the open overlays concept in general. Finally,
Section 5 discusses related work, and Section 6 offers our overall
conclusions and plans for further research.

2. THE OPEN OVERLAYS FRAMEWORK
2.1 Context
There are essentially three responses to the network heterogeneity
that we noted above. The first is to progressively add features to
existing middleware platforms to cope with the increased levels of
heterogeneity (e.g. extensions to deal with mobile computing). It
is now well recognized however that this leads to bloat and is not
a viable long-term solution. The second approach is to create
specialised per-application-domain middleware platforms (e.g.
middleware for sensor networks). This approach has yielded some
success but suffers from significant limitations—particularly in
terms of achieving interoperability and accommodating the kinds
of ‘extreme’ heterogeneity (e.g. systems that integrate sensor
networks and clusters) referred to above. The third approach,
which we favour, is to offer a configurable framework that can be
tailored to the needs of a given application and operational
domain (or domains) while avoiding the shortcomings of the two
previous approaches. Configurable frameworks also have the
benefit that they can potentially support run-time reconfiguration,
and thus address another emerging trend in modern distributed
systems: dynamicity, and the consequent need for adaptivity.

In general terms, our research over the past few years has been
targeting the development of such frameworks through a number
of projects including Open ORB [4], ReMMoC [22], NetKit [11],
Gridkit [23], and through our contributions to the RUNES
middleware [10]. The approach is well documented and builds on
the complementary nature of lightweight software component
technology (together with component frameworks) in tandem with
reflection. Components and component frameworks provide the
building blocks and associated principled software engineering
methodology for the construction of middleware, and reflection
provides the means to inspect and adapt this underlying (explicit)
structure, and thus additionally render it reconfigurable at runtime
to address the need for adaptivity. OpenCOM [12] lies at the heart
of this architectural approach, offering the necessary underlying
lightweight and reflective component model.

We have employed this approach in the design of the open
overlays framework that is the subject of this paper. The
framework is integrated as part of the wider Gridkit middleware
architecture [23], which also addresses heterogeneity in other
dimensions (e.g. in supporting multiple interaction types [24], and
in dealing with heterogeneous service discovery protocols [9]).
Aspects of the open overlays framework have previously been
presented in the literature [23, 24, 25]; but in the following sub-
sections we provide a consolidated overview and update to
provide context for the substantial evaluation material in Sections
3 and 4 which forms the main contribution of this paper.

2.2 Basic architecture of the framework
The open overlays framework. The open overlays framework
(as visualised in Figure 1) is an OpenCOM component framework
that is deployed on each participating node in the distributed

system. The framework accepts ‘plug-in’ components that offer
various types of overlay-related behaviour. More specifically, the
types of components that can be plugged into the framework are
as follows:

Figure 1. An example configuration of the open overlays

framework

i) Overlay plug-ins. These are per-node implementations of
network overlays. For example, Figure 1 shows four overlay
plug-ins: TBCP [35], Scribe [7], and plug-ins for a Chord
Distributed Hash Table (DHT) and a Chord Key-Based
Routing (KBR) overlay [44]. Multiple overlays can operate
simultaneously in the framework either in mutual isolation
(cf. TBCP and Scribe in Figure 1) or in a stacking
relationship (e.g. Scribe and Chord DHT are both stacked
atop Chord KBR). The overlay plug-in abstraction can be
applied uniformly throughout the communication stack. For
example, transport protocols like TCP or UDP are
represented as overlay plug-ins, and an AODV overlay
plug-in may be provided in the network layer in a MANET
environment. Note, we term plug-ins implementing
transport behaviour (i.e. no routing) as null overlays. Hence,
the abstraction can even be applied at the level of the
physical network as demonstrated in Section 3.

ii) Interface plug-ins. While overlay plug-ins provide different
types of behaviour, interface plug-ins capture common API
patterns that can be shared by multiple overlays. For
example, following [15], we provide an interface plug-in for
DHT overlays and another for multicast overlays. The
indirection provided by interface plug-ins isolates higher-
layer software from the idiosyncrasies of individual overlay
plug-ins, facilitates application-transparent adaptation (i.e.
transparently replacing one overlay with another), and
encourages a principled approach to the development of
‘families’ of overlays plug-ins, each of which shares a
common API.

A pattern for overlay plug-ins. Overlay plug-ins are themselves
‘mini’ component frameworks (in OpenCOM, component
frameworks are inherently components), each of which, as shown
in the left part of Figure 1, is composed of three distinct elements
(components) that respectively encapsulate the following areas of
behaviour:

i) control behaviour, in which the node co-operates with its
peer control element on other nodes to build and maintain an

overlay-specific virtual network topology;

ii) forwarding behaviour that determines how the overlay will
route messages over the aforementioned virtual topology;

iii) state information that is maintained for the overlay; e.g.
nearest neighbours.

Each of these three elements exposes a standard interface,
IControl, IForward, and IState respectively, which enables the
free composition of overlays (subject to the configuration
constraints discussed below). We refer to this three-element
architecture as the overlay pattern. The motivation for the overlay
pattern is to achieve flexibility in terms of both configuration and
dynamic reconfiguration by enabling both control and forwarding
behaviour to be independently replaced without loss of state
information. Note also that the overlay pattern can form a basis
for further decomposition—i.e. each of the three elements can
itself be a component framework. We consider such an overlay in
Section 4.

2.3 Local configuration and reconfiguration
Local configuration Each per-node instance of the open overlays
framework is dynamically configured at deploy-time. Possible
configurations are first set out in terms of a set of pre-installed
profiles, each of which specifies an available palette of overlay
and interface plug-ins and a set of basic constraints that specify
configurations that are recognised by the profile. As examples, we
have defined profiles for multicast environments and for wireless
sensor networks (see Section 4, table 6).

To support configuration, the framework employs both static and
dynamic meta-data as follows:

i) static meta-data is attached to the set of overlay plug-ins
currently available in the profile; this specifies a set of
configuration rules (see below), constrains which other
overlay plug-ins may be stacked below the plug-in, and may
also constrain which interface plug-in the overlay requires;

ii) dynamic meta-data is provided by a per-node context engine
[Capra,03]; this meta-data varies dynamically according to
the current state of the host node in terms of relevant
characteristics such as battery life, network connectivity etc.

The static configuration rules contained within each profile are
declarative XML-based expressions that specify the configuration
possibilities supported by the profile. As an example, the
following configuration rule (expressed in pseudo-code rather
than XML for the sake of clarity) states that when a ‘multicast’
service is requested by the application, and the current network
context is ‘fixed infrastructure with no IP multicast support’, then
the TBCP overlay plug-in should be instantiated and configured
beneath the ‘overlay multicast’ interface plug-in—i.e. to match
one of the configurations shown in Figure 1:

if (multicast && fixed_infrastructure &&
 !IP_multicast)
 configure overlay_multicast interface with TBCP

Once the execution of such a rule has resulted in the instantiation
of a ‘top-level’ overlay plug-in (i.e. TBCP in our example), the
configuration process continues in a delegated manner which we
refer to as top-down recursive instantiation. This involves each
overlay plug-in evaluating its own configuration rules, and on that

basis selecting, instantiating (or discovering) and configuring a
further overlay at the next level down. This process continues
until an overlay plug-in is encountered which has no rules that
trigger any further instantiation.

Local reconfiguration Having established a configuration as
discussed above, it is possible to dynamically reconfigure a node’s
overlay configuration using the ‘standard’ OpenCOM reflective
capabilities [12]. For example, one can inspect the current
composition of components in the framework, replace or add
components, or add interceptors. However, in line with the usual
semantics of OpenCOM component frameworks, all such actions
are subject to ‘veto’ if they would violate the meta-data
constraints associated with the profile or the current state of the
framework instance. For example, a constraint of the overlay
framework is that there must be a null overlay plug-in (e.g.
transport or physical network component) at the bottom of the
overlay framework configuration.

2.4 Distributed deployment & reconfiguration
While local configuration and reconfiguration rely on static and
dynamic meta-data available on each node, Distributed
configuration (i.e. overlay deployment) and reconfiguration both
rely on generic support provided by OpenCOM’s distributed
component framework (DCF) facility [25].

DCFs are coordinated sets of local component framework
instances that are spread across a set of co-ordinated nodes. For
example, a DCF-enabled extension of the TBCP overlay plug-in
from Figure 1 would contain an instance of the TBCP component
framework for every node participating in the overlay. DCFs
support dynamic reconfiguration both at a coarse-grained (e.g.
changing the top-level overlay in use), and a fine-grained level
(e.g. changing the overlay plug-ins underlying the top-level one,
or changing one of the elements within an individual overlay
plug-in).

Figure 2. The per-node elements of a Distributed Component

Framework

The DCF facility is supported by the per-node architecture
illustrated in Figure 2. Briefly, both deployment and
reconfiguration are driven by configurators which select and
apply reconfiguration ‘policies’—i.e. scripts to be executed on
each DCF node to enact a specified deployment or reconfiguration
action. The selection of these policies from a policy repository is
performed similarly to the local configurations/reconfigurations

discussed in section 2.2 (i.e. based on meta-data and configuration
rules).

DCFs themselves can be very flexibly configured according to
application needs. For example, depending on the numbers of
participating nodes, each DCF may employ a single master
configurator or per-node distributed configurators. Similarly, they
may employ either a single or multiple context engine and policy
database. In addition, the strategies used to achieve consensus in
the case of distributed configurators, or to achieve quiescence
before applying a policy script, can all be flexibly configured. We
also support configurable strategies to post-validate policy
enactments, ranging from simple but scalable strategies based on
exceptions to a fully reliable (but not very scalable) transaction
protocol. Each DCF also maintains a meta-interface (see
IDistributedMetaArchitecture in figure 2) that enables the atomic
insertion (deletion) of components into (from) the local
component framework instances on all the participating nodes.
The meta-interface also reifies information about the DCF in
terms of its participating nodes and their current component
configurations. The communication underlying the meta-interface
is implemented in terms of a lightweight group membership
service [21].

For safe dynamic reconfiguration it is important to ensure that
updates do not impact the integrity of the system. Hence, the
distributed framework must be made safe to adapt, i.e. placing it
in a quiescent state. We have so far developed a single, centralised
implementation for deriving a safe state in the distributed
framework (this is used for the evaluation results in section 3). A
request to reconfigure the distributed framework from a central
node generates a request message asking each local framework
instance to be placed in a quiescent state; this message is
propagated via gossiping through the meta-group service. Once a
local framework is in a quiescent state it returns a notification to
the configurator node. Upon the condition that all members are in
a quiescent state the reconfiguration can take place. The
disadvantage of the centralised approach is that it may be too
resource intensive, and may not scale suitably for large numbers
of nodes. Additionally, it may not be necessary to place all nodes
in a safe-state at the same time, or have a single node managing
the transition to a safe state. Hence, our framework also supports
selectable approaches to safe-state management that can be
tailored to the particular style of reconfiguration to be performed
and the environment that the framework is deployed.

In sum, in the context of the open overlays framework the DCF is
used to make coordinated changes across all member nodes of an
overlay. For example, in a spanning tree overlay plug-in we can in
one action change the topology of the overlay from a ‘fewest hop’
to a ‘shortest path’ configuration by reconfiguring the control
element of the plug-in on each node (see Section 3). Similarly, we
might change the routing strategy of a multicast overlay to anycast
by globally reconfiguring the forwarding elements.

3. CASE-STUDY BASED EVALUATION
3.1 Background
We now discuss the application of the open overlays framework
in an implemented real-world scenario: wireless sensor network-
based real-time flood forecasting in a river valley in the north west
of England. This work has previously been published from an
application perspective [28]; this paper, in contrast, takes a
quantitative perspective and focuses especially on the dynamic

reconfigurability capabilities of the open overlays framework in
the scenario.

In terms of necessary background, we monitor water depth and
flow rate in the river by deploying a number of specialised sensor
nodes along the banks of the river. About 15 nodes are currently
deployed. The sensor data is collected in real-time and routed
using a spanning tree topology to one or more designated ‘root’
nodes. From there the data is forwarded via GPRS to a prediction
model that runs on a remote computational cluster.

Each sensor node (known as ‘GridStix’) comprises a 400MHz
XScale CPU, 64MB of RAM, 16MB of flash memory, and
Bluetooth and WiFi networks (the root nodes are also equipped
with GPRS). Each GridStix is powered by a 4 watt solar array and
a 12V 10Ah battery. They run Linux 2.6, version 1.4 of the
JamVM Java virtual machine. Unlike traditional sensor network
deployments, wherein sensors are merely responsible for relaying
sensor data to off-site processing facilities, this deployment makes
significant use of local processing, which is used to support
computationally complex sensors and to support the local
prediction of future environmental conditions. This functionality
necessitates rich support for heterogeneous network technologies.
On the one hand, networking support must be sufficiently power-
efficient that nodes may operate for extended periods of time. On
the other hand, applications such as image-based flow prediction
also require high performing (and implicitly power hungry)
networking support.

This need for heterogeneity is further compounded by varying
resilience requirements: During quiescent periods, when flooding
is unlikely, data may reach the off-site cluster with a high delay.
Faults in the network may take a long time to be recovered from,
since they might only jeopardise the completeness of
measurement logs. In these periods, low energy consumption is a
prime requirement to maximise the life-time of the sensor
network. By contrast, when a flood is imminent, we want the
network to react quickly, while providing a high degree of
resilience (e.g. a low sensitivity to disruptions), even if this means
its energy supplies get depleted much more rapidly.

To support these heterogeneous application requirements, we have
implemented a tailored Flood-WSN profile on top of our Overlays
Framework, which we deployed on each node in the network. In
the remainder of this section we describe in more details how we
mapped our application requirements unto this domain-specific
profile. We also present lines-of-code (LoC) and memory
footprint measurements to convey an idea of the size and
complexity incurred by this implementation of this profile.

In a second part (Sections 3.3 and 3.4), we then discuss the overall
performance of the resulting system, in terms of latency,
resilience and power consumption. In particular we look at the
impact of the reconfigurations made possible by the framework.
More specifically, the figures we present show that the use of the
framework has no detrimental impact on the overall performance
of the flood prediction network, and that the reconfiguration
mechanisms embedded in the framework cause acceptable
overheads, two crucial preconditions for the deployment of our
technology in real applications.

3.2 The Flood-WSN profile
Our application supports reconfiguration along two dimensions,
which both lend themselves to the structures offered by our
Overlays Framework:

i) At the physical network level each node can use either
Bluetooth or WiFi (802.11b). Both technologies have
extremely different throughput, energy, and range properties
as summarised in Table 1 (These power draw figures are
based on Ericsson ROK-104-001 BT modules, and Marvell
88W8385 WiFi modules. The given range figures were
measured using strategically deployed directional antennas).
WiFi provides the highest throughput and longest range, but
at the cost of energy consumption almost an order of
magnitude higher than Bluetooth. Typically Bluetooth
would be used in quiescent conditions, and WiFi in
imminent flooding situations.

ii) At the data routing level data may be routed from the
sensor nodes to the root node along two different types of
spanning tree: either using a ‘shortest path’ (SP), or a
‘fewest hop’ (FH) strategy. Fewest hop (FH) spanning trees
are optimised to maintain a minimum number of hops
between any given node and the root. FH trees minimise the
data loss that occurs due to node failure, but are sub-optimal
with respect to power consumption. Shortest path (SP)
spanning trees are optimised to maintain a minimum
distance in edge weights from any given node to the
distinguished ‘root’ node; edge weights are derived from the
power consumption of each pair-wise network link. SP trees
tend to consume less power than FW trees, but offer poorer
performance;

Table 1. Relevant characteristics of Bluetooth and WiFi

 Throughput Power Draw Range
Bluetooth 786Kbps 0.4W typical up to 200M

WiFi 11Mbps 2.9W typical up to 1.2KM

These two levels of optional configuration are reflected in our
Flood-WSN profile by four options (WiFi, Bluetooth, SP and FP
spanning trees). As FH and SP overlays differ only in terms of
their forwarding components, an FH overlay may be implemented
simply by creating a new forwarding component and re-using the
state and control components of the SP tree.

The storage memory footprint (on disk) of the resulting code is
shown on Table 2. The Flood-WSN profile consumes just 28KB
of storage memory, and an average of 105KB of dynamic memory
during execution inclusive of platform specific overheads such as
the Java virtual machine running on the GridStix. In order to save
dynamic memory, overlays are instantiated on demand, rather
than being maintained concurrently.

Table 2. Footprint of the WSN Profile in deployment.

 Storage Memory

OpenCOM 52.4KB
Overlays Framework 23.8KB
Flood-WSN Profile 28.0KB

Total 104.2KB

The WiFi/Blueetooth capabilities were extremely easy to
implement as they directly rely on OS-level capabilities. Much

more interesting for the assessment of the Overlays Framework is
the implementation of the two types of Spanning Trees topologies,
whose size and footprints are described in Table 3. The spanning
tree plug-ins necessitated the creation of four classes on top of the
underlying framework, one for each element of the overlays
pattern that we presented in Section 2.2. Two classes served both
spanning trees (the control and state components), with two
differentiated forwarding components were implemented, one
creating an SP tree, and one an FH tree. Importantly, as Table 3
shows, this re-use of components between FH and SP trees allows
an additional tree overlay to be implemented by replacing a single
component at a storage cost of only 6.5KB.

Table 3. Breakdown of Overlay Memory Footprint

 Shortest Path (SP) Fewest Hops (FH)

 Size LoC Size LoC

Control 7.3KB 124 re-used re-used

State 2.5KB 24 re-used re-used

Forward 6.3KB 346 6.5KB 352

3.3 Overall Performance
We now discuss the overall performance of the resulting
application, in terms of latency, resilience and power
consumption. More precisely, we start with a quantitative
evaluation of the relative costs and benefits of the various options
identified above as a basis for determining the conditions under
which the system might best be reconfigured. We first discuss
how the use of Bluetooth or WiFi influences the characteristics of
the network, and then move on to compare the two different
spanning tree configurations (Fewest Hops and Shortest Path).
The criteria employed include both generic metrics and
application-specific concerns (see below). The generic metrics are
as follows:

i) Latency: We quantify this in terms of the average latency
with which messages can be relayed from each sensor node
to the root node (and thence to the back-end flood prediction
models).

ii) Resilience: This is a function of the extent to which the
failure of a given node reduces the overall connectedness of
the network. We quantify it as the number of viable routes
between each node and the root.

iii) Power Consumption: Although the GridStix are equipped
with solar panels, power consumption is still an extremely
important factor given that flooding occurs in conditions of
low light intensity! We quantify this as the per-hop power
consumed during the transmission of a 1KB sensor reading
from each node to the root.

In all cases we measure and plot each of these metrics for each
node in the network. The figures were obtained by empirical
measurements on a lab version of the deployed system with a
topology as shown in Figure 3.

Figure 3. FH (left) and SP (right) Spanning Trees

Figure 4a. Physical Network Latency

Figure 4b. Physical Network Resilience

Figure 4c. Physical Network Power Consumption

The Bluetooth and WiFi configurations were evaluated against
each other using a common configuration at the Spanning Tree
level in both cases (we chose an SP configuration that is designed
to minimise power consumption). In Figure 4a, the ‘latency’ graph
shows that WiFi incurs significantly less latency than Bluetooth
(over nodes B-O—i.e. 14 non-root nodes): average reporting
latency for the latter was 2,912ms, compared to just 38ms with
WiFi. The ‘resilience’ graph (in Figure 4b) again shows Wifi
performing significantly better than Bluetooth: the average
number of routes from each node is 13.2 for Wifi compared to just
4.4 for Bluetooth. Finally, the ‘power consumption’ graph (in
Figure 4c) shows that Bluetooth consumes significantly less
power than the lowest power WiFi configuration. The average
per-hop power consumption was 0.44 Watts for Bluetooth and
2.35 Watts for WiFi.

In summary, and as expected, WiFi offers lower latency and
higher resilience than the Bluetooth configuration, but consumes
significantly more power. It is also interesting to note that for each
of the three properties evaluated there are significant variations
across the nodes. This implies that a decision as to the optimal
time at which a reconfiguration operation should be initiated
ought ideally to be informed by data from multiple nodes in the
tree. Last but not least, the energy figures are in lines with those
measured in Table 1 - the power consumed by local computation
during reconfiguration is negligible compared to the power
consumed due to network use.

Spanning Tree configurations The SP and FH overlay network
configurations were evaluated against each other (using the WiFi
network configuration in both cases); the results are seen in Figure
5.

Physical Network Latency

1

10

100

1000

10000

B C D E F G H I J K L M N O

Node ID

BT
WiFi

Reporting

 Latency

 (mS)

Physical Network Resilience

0
2
4
6
8
10
12
14
16

B C D E F G H I J K L M N O

Node ID

WiFi
BT

Routes

To

Gateway

Physical Network Power Consumption

0

500

1000

1500

2000

2500

3000

B C D E F G H I J K L M N O

Node ID

BT
WiFi

Av. Power

Consum.

(mw)

Figure 5a. Spanning Tree Latency

Figure 5b. Spanning Tree Resilience

Figure 5c. Spanning Tree Power Consumption

In Figure 5a, the ‘latency’ graph shows FH performing
significantly better than SP: the average reporting latency with FH
was 11 milliseconds compared to 28 milliseconds for SP. As
expected, reporting latency in both cases tends to increase with
separation from the gateway node (the nodes to the right of the bar
chart happen to be those that are physically located furthest from
the root). On the ‘resilience’ graph (in Figure 5b) FH again
performs significantly better than SP: the average number of
nodes affected by node failure in FH was 1.29, as compared to

2.64 for SP. Finally, the ‘power consumption’ graph (in Figure 5c)
shows that FH consumes significantly more power than SP: the
average per-hop power consumption was 3.39 Watts for FH and
2.35 Watts for SP.

In summary, FH is significantly better than SP in terms of latency
and resilience, but consumes significantly more power. Again
there are significant variations from node to node. These
differences between the FH and SP topologies, and between
individual nodes tends to show that the main drivers for these
measurements lay outside of the Overlay Framework and the
Flood-WSN profile, whose impact is probably negligible
compared to other influencing factors, such as the lengths of
routes, and the characteristics of the wireless technologies in use.

Triggering Reconfiguration: Reconfiguration is supported in our
sensor network though the Distributed Component Framework
facility included in the Overlays Framework (see Section 2.4).
The reconfiguration opportunities arising from the above analysis,
and the associated ‘triggers’ that drive the system from one
configuration to another are expressed with declarative
configuration rules, summarised in Figure 6 in the form of a state
transition diagram (to avoid excessive presentational complexity,
the diagram represents a drastically simplified view of the
implemented system). We also show a representative pseudo-code
configuration rule relating to one of the transitions (the top one).

Figure 6. Reconfiguration states and triggers (simplified)

As can be seen, the triggers/rules are partly based on the factors of
latency, resilience and power consumption discussed above; but
they also include two additional application-specific triggers. The
first of these, High_Flow, is based on attaching a video camera to
some of the nodes, pointing this at the river surface, and
estimating river flow rates by carrying out some simple image
processing on the resultant images. In the other, Flood_Predicted,
the trigger is provided by so-called point prediction models [3]
which provide localised predictions of water depth based on the
collated readings of depth sensors in the immediate locality.
Interestingly, the computations underlying High_Flow and
Flood_Predicted run in a distributed manner on the GridStix

Spanning Tree Latency

0

10

20

30

40

50

60

70

B C D E F G H I J K L M N O

Node ID

Reporting

Latency

 (mS)
SP
FH

Spanning Tree Resilience

0
1
2
3
4
5
6
7
8
9
10

B C D E F G H I J K L M N O

Node ID

Routes

Affected

by

Failure

SP
FH

Spanning Tree Power Consumption

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

B C D E F G H I J K L M N O

Node ID

Av.

Power

Consu.

(mW)
FH
SP

nodes themselves; and the open overlays framework is used to
instantiate additional overlays to handle the coordination involved
in these distributed computation (cf. the principle of supporting
multiple co-existing overlays).

3.4 Evaluating the cost of reconfiguration
While dynamic DCF-based reconfiguration clearly enables system
utility to be optimised for varying environmental conditions, there
is a cost associated with each reconfiguration operation in terms
of the time taken to perform the reconfiguration, and the power
consumed by the additional CPU and network activity. These are
significant costs: time taken reconfiguring is time during which
the network is out of commission (involving lost sensor readings);
and consuming additional power clearly increases the risk of
losing nodes due to power depletion. We therefore carried out
experiments to evaluate the cost of reconfiguration in our case
study scenario. We focused on reconfiguration at the Spanning
Tree level as this avoids network-specific overheads that would
inevitably impact measurements involving switching between the
two physical networks.

Figure 7a. Reconfiguration times

Figure 7b. Reconfiguration costs in terms of power

Figure 7a shows the per-node time required to reconfigure
between FH and SP spanning trees for the same topology that was

used in Section 3.2. The average time required was 1878 ms. To
put this in perspective, at typical sensing rates used in the case
study this implies an average loss of less than one message (0.36
messages).

Figure 7b shows the per-node power costs associated with
reconfiguration from FH to SP and vice versa (there is a
difference in cost between the two directions because the DCF
was configured to employ the current overlay to support
reconfiguration operations). When reconfiguring from FH to SP,
network power costs an average of 44.2 milliwatt hours of battery
life per node. When switching from SP to FH, network power
costs average 23.5 milliwatt hours. But to put this in perspective,
the maximum power consumed during overlay reconfiguration for
any node (46 milliwatt hours) is equivalent to less than 0.05% of
the battery capacity of a GridStix, which in combination with the
infrequent nature of reconfiguration is effectively negligible.

Overall, it can be seen that the power and time overheads of
reconfiguration are relatively small, particularly compared to the
potential benefits of optimising the system to current conditions.

For comparison, and in order to apportion the share of the
Framework’s mechanisms in reconfiguration costs, average
overheads for local reconfiguration in the Framework are
provided in Table 4. This shows that the frameworks
reconfiguration overhead is quite reasonable, averaging 198 ms,
and roughly only represents one tenth of the reconfiguration time
observed on each node, the rest being due to the latency of
message passing that is required to support distributed
coordination, and thus outside of the Open Overlays structure.

Table 4. Time overhead of Reconfiguration.

 Overhead (ms)
Component Creation 118
Component Binding 69
Component Connection 11

Total 198

3.5 Conclusion
This case study shows that different level of network
heterogeneity (here both in wireless technologies, and in overlay
topologies) can easily be captured into the structures of our
Overlays-Framework. The decomposition of overlay plug-ins into
three standard components also encourages reuses, and allows
developers to support a wide scope of alternative configurations at
a relatively low cost in terms of memory footprint and
implementation effort.

Finally, the performance figures we presented show that the use of
the framework has no obvious detrimental impact of the overall
performance of the flood prediction network, and that the
reconfiguration mechanisms embedded in the framework cause
acceptable overheads, two crucial preconditions for the
deployment of our technology in real applications.

4. LESSONS LEARNT AND DISCUSSION
In this section, we expand on the conclusion of the case-study
evaluation and we present the lessons we have learnt on the
benefits of our Open Overlays framework as we applied it to a

Reconfiguration Time

0

500

1000

1500

2000

2500

B C D E F G H I J K L M N O

Node ID

Time

(mS)

Power Cost of Reconfiguration

0

20

40

60

80

100

120

B C D E F G H I J K L M N O

Node ID

Power

Consum.

(mWH)

Local CPU
FH to SP
SP to FH

number of different domains. We discuss qualitatively the
advantages of the framework in terms of software development,
and present some more extensive performance figures in terms of
memory footprint and configuration times for some of the many
plug-ins we have already implemented.

We finish this section with a general discussion of the value we
see in the fundamental notion of overlays as an architectural
principle for heterogeneous middleware.

4.1 Benefits of the open overlays framework
We evaluate the effectiveness of the open overlays framework
against the following four criteria:

i) Generality: To what extent can the framework be generally
applied in terms of different network services deployed in
different network environments; and how general is the
overlay pattern in developing overlays?

ii) Ease of Use: How easy is it for a developer to use the
framework, and extend it with new functionality?

iii) Configurability: To what extent can the framework be
configured to meet specific requirements and environments
(an in-depth evaluation of reconfigurability is provided in
Section 3)?

iv) Resource Overhead: Is the overhead incurred to support
generality, configurability and reconfigurability acceptable?

Generality As an indicator of generality, we have developed a
substantial set of overlay plug-ins of which Table 5 lists eight.
From this list, the generality in terms of the network services
provided is clear: we cover KBR protocols (e.g. Chord and
Pastry), a DHT overlay, multicast protocols (e.g. Scribe and
TBCP), gossip overlays (Scamp), and more specialised overlays
such as a node failure monitoring overlay, and a spanning tree
overlay for fan-in routing. Table 5 also shows the configurability
options offered by each overlay plug-in (in brackets, following the
descriptions), and illustrates that the framework can be generally
applied in different network environments (thus addressing
network heterogeneity): e.g. we can use the Spanning Tree
overlay in a wireless sensor network (see Section 3); and we can
choose different multicast protocols for different networks: e.g.
TBCP for wide area networks, or Scamp for wireless networks.

These various implementations also provide a strong and
comprehensive evaluation of the overlay pattern: all eight were
straightforwardly implemented in terms of the three defined
elements (i.e. control, state and forward), providing clear evidence
that the pattern applies generally to different overlay types.
Moreover, each of the implementations exhibits a clear and
natural separation of concerns in contrast to many monolithic
implementations.

As shown in Figure 8, one of the eight overlays, i.e. Pastry
KBR, was further decomposed to investigate finer-grained
configurability and reconfigurability (for example, the control
element is composed of sub-components corresponding to distinct
Pastry algorithms, i.e. for joining, leaving, maintenance and
repair). This decomposition demonstrates that the overlay pattern
can itself be extended to meet the complexities of individual
overlays and yet still be supported by the framework.

Figure 8. Extending the overlay pattern in the Pastry KBR

plug-in

Table 5. Descriptions of some implemented overlay plug-ins

Overlay
Name

Description and configurability options

Chord
KBR

A KBR overlay based on Chord [44] (options:
standard or ‘dependable’ control element; 2 choices
of supporting overlay)

DHT Data storage overlay (options: standard or
‘dependable’ control element; used atop any KBR
overlay)

Pastry
KBR

A KBR overlay based on Pastry [41] (options:
supports alternate overlay maintenance algorithms)

Failure
Monitor

Monitoring overlay based on [45]; detects and
disseminates node failure info (options: used atop
any gossip overlay)

SCAMP Scaleable Group Membership overlay with gossip-
based forwarding [21] (options: 2 choices of
supporting overlay)

Scribe Multicast based on [7] (options: used atop any KBR
overlay)

Spanning
Tree

Tree overlay for fan-in routing (options: shortest
path or fewest hop tree configurations; used atop
either Wifi or Bluetooth ‘overlays’)

TBCP Wide area multicast overlay [35] (options: standard
or ‘dependable’ control element; 2 choices of
supporting overlay)

Ease of use The framework has been used by over 15
programmers, from a range of institutions, with different levels of
programming experience, in a number of system development
projects (e.g., projects developing middleware for sensor
networks, resource discovery, and publish-subscribe). Some of
these programmers contributed as ‘plug-in developers’, some as
‘framework configurers and users’, and some as both. From
observation and discussion were able to draw the following
conclusions:

i) Plug-in developers generally understood and followed the
approach implied by the overlay pattern, and to this extent
their solutions are easily deployable by third party
application developers. A caveat is that in some cases
control, forward and state were not completely separated

into distinct components. This is an area where further
software engineering support might benefit both the plug-in
developer and the framework configurer/ user.

ii) A typical overlay plug-in is developed in a time frame of 2
to 8 weeks depending on the complexity of the overlay.

iii) Framework users found it relatively easy to apply the
existing profiles of the framework; but in cases where new
configuration rules needed to be defined, they expressed the
need for clearer documentation of the set of attributes and
context values understood by the framework.

Hence, despite the fact that the evidence is primarily anecdotal,
and that there are areas of possible improvement, we believe that
it is reasonably safe to conclude that third parties can use the
framework with relative ease.

Configurability To measure the extent of the configurability of
the framework we calculated the numbers of possible
configurations in each of four profiles (i.e. an ‘empty’ profile
consisting of only the framework itself, a ‘WSN’ profile for
wireless sensor network environments, a ‘multicast’ profile for
multicast overlays, and a ‘full’ profile containing all of the
foregoing; see Table 6). The numbers, which are summarised in
the rightmost column of Table 6, result from an exhaustive
enumeration of all the configurations reachable via the ‘top-down
recursive instantiation’ process described in Section 2.3, applied
to the set of plug-ins available in each profile (for example, TBCP
can be configured with either a standard or a ‘dependable’ control
element, and it can be layered over TCP and UDP transport
‘overlays’ and thus yields 4 configurations at its level). The results
show that the more complex and well-populated profiles support a
very large number of possible configurations; e.g. the ‘full’ profile
has 26,999; this does not mean that programmers must write
27,000 rules, rather the approximately 30 rules for the full profile
combine to offer many potential configurations. But, more
importantly, because of the top-down recursive instantiation
process, all of these configurations are meaningful. This is
because the architecture of the framework disallows invalid
instantiations. This can be compared to other configurable toolkits
such as Ensemble [46] or JGroups (www.jgroups.org) which,
despite supporting millions of combinations, offer a much smaller
number that are actually useful (because these use event-based
component bindings that allows components to be connected to
any other in any order).

Furthermore, the overlay pattern contributes significantly to the
configurability of the framework by supporting fine-grained
configuration of individual overlays. Consider, for example, a
Gnutella implementation with either a random-walk-based, or a
flooding-based forwarder; or a tree overlay with a control element
that either contains or doesn’t contain a self-repair algorithm. This
applies equally when the overlay pattern is decomposed. For
example, our Pastry example above supports two alternative
implementations of the maintenance sub-component: one version,
which is based on the original Pastry algorithm, employs frequent
leaf set broadcasts over TCP connections; the other employs
UDP-based keep-alive messages to monitor the state of its leaf set.
The latter algorithm is less robust to network wide failure or
malicious attack, but generates far fewer network messages.

Resource overhead To assess the price paid for its generality,
ease-of-use and configurability, we quantified the resource
overhead incurred by the open overlays framework in three
experiments. All of these employed components from Gridkit 1.5/

OpenCOM v1.3.5 (available from http://gridkit.sourceforge.net),
executing on a Java 1.5.0.10 virtual machine on a networked
workstation with a 3.0 GHz Pentium 4 processor, 1 Gbyte of
RAM and running Windows XP.

The first experiment (see Table 6) investigated the static storage
footprint costs of each profile; i.e. the disk space required to store
the framework, components and configuration rules. This measure
is important as it illustrates the cost of storing not only a starting
configuration but also any reconfigurations that may subsequently
be applied. It can be seen from Table 6 that the base framework
requires 60K before any plug-ins are added. Note that the
configuration rules take a lot of storage (usually at least 2KBytes)
because they are coded in XML. A more efficient representation
might be better for profiles that are both complex and designed to
be applied in resource-scarce environments.

Table 6. Configurability results and overheads for framework
profiles

Profile No.
plug-
ins

No.
config.
rules

Disk mem.
for config.
rules (KB)

Disk mem
for plug-
ins (KB)

Total No. of
configs
available

Empty 0 0 0 60 1

WSN 7 6 16 146 4

Multicast 21 19 59 169 89

Full 40 31 87 252 26,999

Table 7. Performance times and dynamic memory costs of
typical configurations

Configuration
Name

#plug-
ins

#Conns Profile Config.
time (ms)

Dynamic
mem. (KB)

Empty 0 0 Full N/A 10,448

Empty 0 0 Sensor N/A 8,352

Spanning tree 5 12 Sensor 191 11,452

Spanning tree 5 12 Full 193 15,264

TBCP 6 12 Full 211 15,144

SCAMP 5 9 Full 152 13,708

Scribe/KBR 9 27 Full 486 16,652

Scribe + TBCP 13 39 Full 592 16,972

TBCP+SCAMP 10 21 Full 281 15,308

In the second experiment (see Table 7) , we evaluated dynamic
memory overhead by measuring the RAM footprint of overlay
plug-ins while they were in operation (i.e. joined to a running
overlay). We can see from Table 7 that the basic framework with
no plug-ins is responsible for a high percentage of the overall
footprint (65% on average; note, however, that this figure includes
6,392 Kbytes for the JVM and 600 KBytes for the OpenCOM
kernel). We can again reduce overhead in a given deployment
through the profiling mechanism (different profiles will have
different numbers of configuration rules in memory). More
complex configurations, e.g. the layering of Scribe over a Chord
KBR, or TBCP and Scamp deployed in parallel, obviously
increases the footprint size, but by a small margin, e.g. adding
Scamp to TBCP results in a 164 Kbytes increase.

Finally, the third experiment (again, see Table 7) investigated
configuration performance by measuring the time needed to
configure new plug-ins based on a sample of configurations from
the different profiles (e.g. TBCP in the full profile, etc.). While it
is clear that configuration performance is largely tied to the
complexity of the configuration in terms of the numbers of
configuration rules and plug-ins involved, and the number of
inter-component connections etc., the overall cost of configuration
(including rule evaluation and component initialisation) is largely
negligible compared to time for a node to join an overlay (e.g.
Pastry averages 5 to 10 seconds for node joins). The costs of
(DCF-based) distributed configuration (i.e. overlay deployment)
need not be much more costly than this depending on the protocol
used (e.g. Scamp [21]).

4.2 Assessing the open overlays concept
To evaluate the open overlays concept, we examine how
successful we have been in achieving the desired properties of
virtualisation of the network resource, co-existence of overlays,
and layering of overlays to compose network services. In terms of
virtualisation, Section 4.1 has illustrated the range of overlays that
can be virtualised by common interfaces, e.g. multicast and DHT
network resources. These have then been utilised to build a wide
range of higher level middleware services, e.g. publish-subscribe,
group middleware [24] and sensor middleware (see Section 3) that
are independent of the network service; i.e. the middleware can be
deployed in different networked environments without
modification. This work has demonstrated that virtualisation is
indeed a powerful concept when incorporated within an overall
(configurable and reconfigurable) middleware architecture. This is
also something that is quite unique in that existing middleware
platforms/ paradigms do not yet support network virtualisation.

In terms of co-existence, our experience shows that i) overlays can
be deployed in parallel, ii) this is indeed a useful service to offer,
and iii) the overheads of co-existence are reasonable. This is best
illustrated by the sensor network scenario in Section 3, which
utilises three separate overlays. One outstanding issue is the
management of co-existence, in particular in terms of QoS
properties. We are currently investigating the potential role of the
work by Cooper [8] in addressing this problem. Finally, in terms
of layering we have shown that relevant overlays can usefully be
stacked on top of each other, e.g. the Scribe overlay (or the DHT)
can be stacked on top of either Pastry or Chord. Similarly, in the
scenario in Section 3 we layer a Spanning Tree overlay on top of
either Bluetooth or 802.11b networks. The layering process is
guided by top-down recursive instantiation and the use of uniform
interfaces, and promotes the reuse of lower-level overlay plug-ins.

5. RELATED WORK
Specialised middleware As mentioned in the introduction, one
approach to dealing with heterogeneity is to develop a series of
specialist middleware platforms for particular domains of
operation. This approach has been most prevalent in the mobile
computing domain, with a wide variety of platforms emerging
including: context-aware and adaptive technologies [6, 37];
particular interaction paradigms [16, 14]; and more specific
techniques to deal with disconnection [29]. Some interesting
techniques have also emerged to deal with heterogeneity in
service discovery platforms, including the ReMMoC platform
from Lancaster [22] and the INDISS work at INRIA [5].
Specialist middleware technologies have also emerged in areas

such as distributed multimedia [47, 17] and grid computing [19,
20].

There is currently strong interest in middleware for sensor
networks. This is a relatively new development building on the
early experiences with operating systems in this area. Middleware
approaches for wireless sensor networks seek to provide abstract
programming models that offer a more global distributed systems
management perspective, often enabling multiple applications to
co-exist and share the underlying sensor infrastructure. A good
survey of middleware for sensor networks can be found in [26],
which includes a taxonomy for sensor middleware featuring
database-inspired approaches, tuple-space approaches and event-
based approaches as important sub-classes.

It is clear that significant advances have been made in terms of
specialist techniques for particular environmental or application
domains. Despite these advances, though, the specialist
middleware approach has a number of very significant limitations.
In particular, these solutions remain narrow in scope and do not
help with problems such as interoperability with other domains. In
addition, they are all developed independently of each other and
there is no support for the re-use of software in other domains, i.e.
there is no common architectural framework.

Configurable and reconfigurable middleware There has been
considerable interest over the last decade in techniques that
support configurability and reconfigurability in middleware. Such
techniques typically rely on underlying reflective support
including both structural and behavioral reflection. Examples of
key reflective middleware platforms include the work at Lancaster
mentioned above, the families of platforms developed at the
University of Illinois at Urbana Champaign [30, 39], ExORB [40],
Arctic Beans [1] and RAPIDWare [42]. This paper follows this
general approach and reflection lies at the heart of our proposal
for open overlays.

Other researchers are investigating the potential role of aspect-
oriented programming in supporting configurable (and in some
cases reconfigurable) middleware platforms [48, 31]. This is in
many ways complementary to reflective middleware, seeking
higher level aspect-oriented constructs to express the weaving of
cross-cutting concerns in middleware. Indeed, some
implementations in this area build on top of reflective middleware
technology [18].

Overlay Frameworks As mentioned in the introduction, the
networking community has been carrying out a significant volume
of research directed towards the development of network overlays.
However, most of this research has been targeted towards the
implementation of application specific protocols such as peer-to-
peer substrates or multicast solutions. In this section, we focus on
the smaller number of initiatives focusing on middleware
frameworks to support overlay software.

iOverlays [32] was one of the earliest attempts to define a
framework for the support of overlay networks. Essentially,
iOverlays is low-level software cross-connect that forwards
messages according to a script that embodies the semantics of a
particular overlay. ODIN-S [8] also provides a framework for
overlay development, with an emphasis on managing resources
for overlays that share common nodes, i.e. co-existent overlays.
As such this work is strongly complementary to ours. [34] also
explores the co-existence of multiple overlay networks across
nodes, in particular demonstrating that the maintenance and
deployment of one overlay (in this case Pastry) can utilise the

behaviour of another (a gossip protocol) to improve its operation.
Both these systems illustrate use-cases that can be generally
developed using our open overlays framework.

Other solutions target the declarative description of overlay
networks and the subsequent automatic generation of code to
implement the desired virtual network abstraction (cf. model-
driven engineering) [2, 38, 33]. This is an interesting approach to
managing the complexity of configurable middleware. The above
solutions focus almost entirely on configuring overlay networks,
i.e. on tool support for the generation of a given overlay style.
There is little or no work on the subsequent management of
overlays, specifically reconfiguration as context changes. In
addition, all of the above are stand-alone toolkits and are not
integrated into broader middleware architectures. We
acknowledge that currently our framework is not as declarative as
these approaches in that low-level overlay code (e.g. in Java or
C++) must be created first before being plugged into our
framework. However, we do believe the two approaches are
complementary and we are investigating model-driven approaches
for generating code to insert into the open overlays framework.

6. CONCLUSIONS AND FUTURE WORK
We have presented and evaluated our concept of open overlays
and its associated framework—a framework that is designed to
comprehensively address the ‘network heterogeneity’ problem in
the context of middleware architecture. In our evaluation of the
open overlays concept, we have argued for the usefulness of
network virtualisation in a middleware context, the usefulness of
supporting multiple overlays per node and the stacking of
overlays, and the benefits of structuring overlay plug-ins
according to the overlay pattern. In terms of the framework-
specific evaluation, we have focused on the framework’s
generality, its ease of use for both plug-in developers and
configurers/ users, the practicability of its configuration and
reconfiguration capabilities (employing top-down recursive
instantiation, declarative rule-based configuration and
reconfiguration, and distributed deployment and reconfiguration),
and the fact that it incurs only a modest resource overhead.
Furthermore, we have presented a detailed case study of network
heterogeneity and at the same time demonstrated the use of our
framework in a challenging, WSN-based, application context in
supporting multiple overlays, and dynamically reconfiguring them
according to current environmental conditions.

In current work, we are integrating an overlay-independent
dependability subsystem [36] into the framework. This can
significantly simplify the ‘control’ element of participating
overlay plug-ins by factoring out the task of overlay maintenance
and delegating this to the framework. We also have a PhD project
that is using the open overlays framework as the basis of a sub-
framework specialising in ad-hoc routing protocols in MANETs.

In future work, we are particularly interested in supporting
challenging scenarios involving ‘extreme’ network heterogeneity
of the type discussed in the introduction (e.g. involving systems
that span a sensor network, a fixed grid environment, and a
loosely-connected MANET). This is a fundamentally challenging
issue in that it is not yet understood even how to design overlays
that can successfully span such environments, let alone an
overarching framework. In addressing this challenge, we do not
foresee major problems in applying the basic tenets of our
framework on individual nodes; it will be the distributed
deployment and reconfiguration issues involving DCFs that will

present the major challenges (e.g. making appropriate choices in
terms of distributed versus centralised configurators, quiescence
and validation algorithms, membership protocols, etc.).

More widely, we believe that users of mainstream middleware
will increasingly demand overlay support, and so the challenge
will arise of how best to integrate the open overlays concept, or a
variant of it, in such platforms. We hope that the experiences
reported in this paper will be of relevance in this.

7. ACKNOWLEDGEMENTS
This work has been carried out in the EPSRC-funded Open
Overlays project (GR/S68521/01) and the NWDA-funded NW
Grid project. We would also like to acknowledge the valuable
contributions of several colleagues including Gareth Tyson, Chris
Cooper, David Duce, Musbah Sager, Wei Li, Laurent Mathy and
Wei Cai.

8. REFERENCES
[1] A. Andersen, G. S. Blair, V. Goebel, R. Karlsen, T. Stabell-

Kul and W. Yu. Arctic Beans: Configurable and
Reconfigurable Enterprise Component Architectures. IEEE
Distributed Systems Online, 2 (7), November 2001.

[2] S. Behnel and A. Buchmann. Overlay Networks -
Implementation by Specification. In Proceedings of the
ACM/IFIP/Usenix International Middleware Conference,
pages 401-410, Grenoble, France, November 2005.

[3] K. Beven, R. Romanowicz, F. Pappenberger, P. Young and
M. Werner. The Uncertainty Cascade in Flood Forecasting.
In Proceedings of the ACTIF meeting on Flood Risk,
Tromsø, Norway, October 2005.

[4] G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F.
Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnston, R.
Moreira, N. Parlavantzas and K. Saikoski. The Design and
Implementation of Open ORB V2. IEEE Distributed Systems
Online, 2(6), September 2001.

[5] D. Bromberg and V. Issarny. INDISS: Interoperable
Discovery System for Networked Services. In Proceedings of
the ACM/IFIP/Usenix International Middleware Conference,
pages 164-183, Greoble, France November 2005.

[6] L. Capra, W. Emmerich and C. Mascolo. CARISMA:
Context-Aware Reflective Middleware System for Mobile
Applications. IEEE Transactions on Software Engineering,
29(10):929-945, October 2003.

[7] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A Large-scale and Decentralized Application-level
Multicast Infrastructure. IEEE Journal on Selected Areas in
Communications (JSAC), 20(8):1489–1499, October 2002.

[8] B. Cooper. Trading off Resources Between Overlapping
Overlays. In Proceedings of the ACM/IFIP/USENIX 7th
International Middleware Conference, pages 101-120
Melbourne, Australia, December 2006.

[9] C. Cortes, G. Blair and P. Grace. A Multi-protocol
Framework for Ad-hoc Service Discovery. In Proceedings of
the 4th International Workshop on Middleware for Pervasive
and Ad-Hoc Computing (MPAC ‘06), Melbourne, Australia,
November 2006.

[10] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L.
Mottola, G. Picco, T. Sivaharan, N. Weerasinghe and S.
Zachariadis. The RUNES Middleware for Networked
Embedded Systems and its Application in a Disaster
Management Scenario. In Proceedings of the. 5th IEEE
International Conference on Pervasive Computing and
Communications (PERCOM’07), pages 69-78, White Plains,
New York, March 2007.

[11] G. Coulson, G. Blair, D. Hutchison, A. Joolia, K. Lee, J.
Ueyama, A. Gomes and Y. Ye. NETKIT: A Software
Component-Based Approach to Programmable Networking.
ACM SIGCOMM CCR, 33(5): 55-66, October 2003.

[12] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, K., and J.
Ueyama, J. A Component Model for Building Systems
Software. In Proceedings of Software Engineering and
Applications (SEA’04), Cambridge, MA, USA, ACTA Press,
ISBN 0-88986-425-X, November 2004.

[13] G. Coulson, D. Kuo and J.Brooke. Sensor Networks + Grid
Computing = A New Challenge for the Grid? IEEE
Distributed Systems Online, 7(12),
http://dsonline.computer.org/portal/pages/dsonline/2006/12/o
12002.html, December 2006.

[14] G. Cugola, A. Murphy and G. Picco. Content-Based Publish-
Subscribe in a Mobile Environment. Handbook of Mobile
Middleware, Corradi, A., and Bellavista, P. eds., pages 257-
285, Auerbach Publications, 2006.

[15] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz and I. Stoica.
Towards a Common API for Structured P2P Overlays. In
Proceedings of the 2nd International Workshop on Peer-to-
Peer Systems (IPTPS), pages 33–44, Berkeley, CA, USA,
February 2003.

[16] N. Davies, A. Friday, S. Wade and G. Blair. L2imbo: A
Distributed Systems Platform for Mobile Computing. Mobile
Networking Applications, 3(2):143-156, August 1998.

[17] V. Eide, F. Eliassen and O. Lysne. Supporting Distributed
Processing of Time-based Media Streams. In Proceedings of
Distributed Objects and Applications (DOA’01), pages 281-
288, IEEE, Rome, Italy, September 2001.

[18] M. Fleury and F. Reverbel. The JBoss Extensible Server. In
Proceedings of the ACM/IFIP/USENIX International
Middleware Conference, pages 344-373, Rio, Brazil, June
2003.

[19] I. Foster. Globus Toolkit Version 4: Software for Service-
Oriented Systems. In Proceedings of the IFIP International
Conference on Network and Parallel Computing, Springer-
Verlag LNCS 3779, pages 2-13, 2006.

[20] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field
and J. Darlington. ICENI: Optimisation of Component
Applications within a Grid Environment. Parallel
Computing, 28(12):1753–1772, December 2002.

[21] A. Ganesh, A. Kermarrec and L. Massoulie. SCAMP: Peer-
to-peer lightweight membership service for large-scale group
communication, In Proceedings of the 3rd Int.Workshop on
Networked Group Communication, London, UK, 2001.

[22] P. Grace, G. Blair and S. Samuel. ReMMoC: A Reflective
Middleware to Support Mobile Client Interoperability. In
Proceedings of the International Symposium on Distributed

Objects and Applications (DOA), pages 1170-1187, Catania,
Sicily, Italy, November 2003.

[23] P. Grace, G. Coulson, G. Blair, L. Mathy, W. Yeung, W. Cai,
D. Duce, and C. Cooper. GridKit: Pluggable Overlay
Networks for Grid Computing. In Proceedings of the
International Symposium on Distributed Objects and
Applications, pages 1463-1481, Cyprus, October 2004.

[24] P. Grace, G. Coulson, G. Blair and B. Porter. Deep
Middleware for the Divergent Grid. In Proceedings of the 6th
IFIP/ACM/USENIX International Middleware Conference,
pages 334-353, Grenoble, France, November 2005.

[25] P. Grace, G. Coulson, G. Blair and B. Porter. A Distributed
Architecture Meta Model for Self-Managed Middleware. In
Proceedings of the 5th International Workshop on Adaptive
and Reflective Middleware (ARM ‘06), co-located with
Middleware 2006, Melbourne, Australia, November 2006.

[26] K. Henricksen and R. Robinson. A Survey of Middleware for
Sensor Networks: State-of-the-art and Future Directions. In
Proceedings of the International Workshop on Middleware
For Sensor Networks, Melbourne, Australia, November 06,
MidSens ‘06, Vol. 218, ACM Press, 2006.

[27] V. Hingne, A. Joshi, T. Finin, H. Kargupta and E. Houstis.
Towards a Pervasive Grid. In Proceedings of the 17th
International Symposium on Parallel and Distributed
Processing, IPDPS, Nice, France, April 2003.

[28] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F.
Pappenberger, P. Smith and K. Beven. An Intelligent and
Adaptable Flood Monitoring and Warning System. In
Proceedings of the 5th UK E-Science All Hands Meeting
(AHM’06), Nottingham, UK, September 2006
http://www.allhands.org.uk/2006/proceedings/proceedings/.

[29] A. Joseph, A. de Lespinasse, J. Tauber, D. Gifford and M.
Kaashoek. Rover: a Toolkit for Mobile Information Access.
In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, Copper Mountain, Colorado, United
States, Jones, ed., SOSP ’95, pages 156-171, ACM Press,
December 1995.

[30] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. Magalhães
and R. Campbell. Monitoring, Security, and Dynamic
Configuration with the dynamicTAO Reflective ORB. In
Proceedings of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing (Middleware’2000), pages 121-143, New York,
NY, USA, April 2000.

[31] B. Lagaisse and W. Joosen. True and Transparent Distributed
Composition of Aspect-Components. In Proceedings of the
International ACM/IFIP/Usenix Middleware Conference,
LNCS 4290, pages 42-61, Melbourne, December 2006.

[32] B. Li, J. Guo and M. Wan. iOverlay: A Lightweight
Middleware Infrastructure for Overlay Application
Implementations. In Proceedings of the ACM/IFIP/USENIX
International Middleware Conference (Middleware 2004),
pages 135-154, Toronto, Canada, October 2004.

[33] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe and
I. Stoica. Implementing Declarative Overlays. SIGOPS OSR,
39(5):75-90, 2005.

[34] B. Maniymaran, M Bertier, and A. Kermarrec. Build One,
Get One Free: Leveraging the Coexistence of Multiple P2P
Overlay Networks. In Proceedings of ICDCS 2007, Toronto,
Canada, June 2007.

[35] L. Mathy, R. Canonico and D. Hutchinson. An Overlay Tree
Building Control Protocol. In Proceedings of the 3rd
International COST264 Workshop on Networked Group
Communication, pages 76–87, London, UK, November
2001.

[36] B. Porter, F. Taiani and G. Coulson. Generalised Repair for
Overlay Networks. In Proceedings of International
Symposium on Reliable Distributed Systems (SRDS 2006),
pages 132-142, Leeds, UK, October 2006.

[37] O. Riva. Contory: A Middleware for the Provisioning of
Context Information on Smart Phones. In Proceedings of the
ACM/IFIP/USENIX International Middleware Conference,
pages 219-239, Melbourne, Australia, December 2006.

[38] A. Rodriguez, C. Killian, S. Bhat, D. Kostic and A. Vahdat.
MACEDON: Methodology for automatically creating,
evaluating, and designing overlay networks. In Proceedings
of the USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI2004), pages 267-280, San
Francisco, CA, USA, March 2004.

[39] M. Roman, D. Mickunas, F. Kon and R. Campbell. LegORB
and Ubiquitous CORBA. In Proceedings of the Workshop on
Reflective Middleware, IFIP/ACM Middleware’2000, IBM
Palisades Executive Conference Center, NY, April 2000.

[40] M. Roman and N. Islam. Dynamically Programmable and
Reconfigurable Middleware Services. In Proceedings of the
5th ACM/IFIP/USENIX International Conference on
Middleware, pages 372–396, Toronto, Canada, November
2004.

[41] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-Peer
Systems. In Proceedings of the ACM/IFIP/USENIX
International Conference on Middleware, pages 329-350,
Heidelberg, Germany November, 2001.

[42] S. Sadjadi, P. McKinley and E. Kasten. Architecture and
Operation of an Adaptable Communication Substrate. In
Proceedings of the 9th IEEE International Workshop on
Future Trends of Distributed Computing Systems
(FTDCS’03), pages 46–55, San Juan, Puerto Rico, May
2003.

[43] A. Sage and C. Cuppan. On the Systems Engineering and
Management of Systems of Systems and Federations of
Systems. Information, Knowledge, Systems Management,
2(4): 325-345, 2001.

[44] I. Stoica, R. Morris, R. Karger, M. Kaashoek and H.
Balakarishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications, In Proceedings of ACM
SIG-COMM, pages 149-160 San Diego, August 2001.

[45] R. van Renesse, Y. Minsky and M. Hayden. A Gossip-Based
Failure Detection Service. In Proceedings of the 1st IFIP
International Conference on Middleware, pages 55–70, Lake
District, UK, September 1998.

[46] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D.
Karr. Adaptive Systems Using Ensemble. Software Practice
and Experience, 28(9): 963–979, August 1998.

[47] G. Xiaohui and K. Nahrstedt. An Event-Driven, User-
Centric, QoS-aware Middleware Framework for Ubiquitous
Multimedia Applications. In Proceedings of 9th ACM
Multimedia (Multimedia Middleware Workshop), Ottawa,
Canada, October 2001.

[48] C. Zhang and H. Jacobsen. Refactoring Middleware with
Aspects. IEEE Transactions on Parallel and Distributed
Systems, 14(11):1058-1073, November 2003.

