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ABSTRACT

In order to provide an increasing number of funuities and
benefit from sophisticated and application-tailosstvices from
the network, distributed applications are led tegnate an ever-
widening range of networking technologies. As thagplications
become more complex, this requirement for ‘network
heterogeneity’ is becoming a crucial issue in tligvelopment.
Although progress has been made in the networlongnaunity in
addressing such needs through the development tforie
overlays, we claim in this paper that the middleveommunity
has been slow to integrate these advances into lemdde
architectures, and, hence, to provide the foundatibedrock for
heterogeneous distributed applications. In respowsepropose
our ‘open overlays’ framework. This framework, wiis part of
a wider middleware architecture, accommodates layeplug-
ins’, allows physical nodes to support multiple dags, supports
the stacking of overlays to create composite paigy@nd adopts
a declarative approach to configurable deploymeat @d@ynamic
reconfigurability. The framework has been in depetent for a
number of years and supports an extensive rangeeasfay plug-
ins including popular protocols such as Chord aadtfy. We
report on our experiences with the open overlagsnéwork,
evaluate it in detail, and illustrate its appliocatin a detailed case
study of network heterogeneity.
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C.2.4 [Computer-Communication Networks]:
Systems -Distributed applications

Distributed
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Algorithms, Measurement, Design, Reliability, Exipggntation
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1. INTRODUCTION

Modern distributed systems can be characterisednéngasing
levels ofheterogeneityThis subsumes both the characteristics of
the distributed applications and services in qoestand the
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environments in which they operate. For examplerehare
increasing demands for applications that are adapéutonomic,
dependable, secure, scalable etc., and also denfandsuch
applications to operate in increasingly-varied emwinents such
as the fixed internet, mobile and pervasive envients,
embedded systems, etc.

In this paper we address a key aspect of heterdgethat has
perhaps received less attention than it deservésimiddleware
community: network heterogeneityAs well as needing to run
effectively over an ever-increasing range of nekivay
technologies (e.g. large-scale fixed networks, heokdid-hoc
networks, resource impoverished sensor networkslliga links,
etc), distributed applications are increasingly deding
sophisticated and application-tailored services mfrothe
underlying network (e.g. multimedia content disttibn, reliable
multicast, etc.). Furthermore, going beyond thlassic’ view of
heterogeneity, we can discern a growing trend tdsvaextreme’
network heterogeneity involving the combining ofrealdy
heterogeneous elements. For example [13] discusssg®rios in
which sensor networks are tightly integrated withster-based
and internet-based grids. This trend is also evidethe current
interest in systems of systems [43] and the pereagiid [27].

Such factors have driven the networking commuritydévelop
the concept of network overlays as an approach to the
virtualisation of the underlying network resourge(dletwork
overlays make it possible to provide a range offedit
networking abstractions including peer-to-peer geyuistributed
hash tables, application-level multicast, etc. um dew, however,
this work has not yet been sufficiently embraced iategrated by
middleware designers (Several overlay frameworkgehbeen
developed (e.g. [32, 8, 2, 38, 33]) but these siftan significant
limitations as discussed in Sectiop Be therefore propose the
concept ofopen overlaysand suggest that it be adopted as a
central element of contemporary middleware platfrim our
conception, open overlays offer a configurable srmbnfigurable
framework that is well integrated into a broaderddieware
architecture, and supports (flexibhgytualization of the network
resource, theco-existenceof multiple (physical or) virtual
networking abstractions, and potentially suppo# leyering of
virtual network abstractions to achieve desiredvoét services
through composition.

In this paper we present a detaildluationof the open overlays
approach. This builds on extensive experience dhgughe
approach in the construction and composition ofasiety of
(often complex) overlays and overlay-based distdatdu
applications. The rest of the paper is structuetbows. Section
2 provides an overview of our open overlays framdwipcusing
on its associated architectural patterns and itppad for



configuration and reconfiguration. Following thi§ection 3
presents an in-depth case-study of network hetame that
demonstrates the application of the approach; aotidh 4 offers
an in-depth discussion of the benefits of the fraor& in
particular and the open overlays concept in genetaially,
Section 5 discusses related work, and Sectioneégofiur overall
conclusions and plans for further research.

2. THE OPEN OVERLAYSFRAMEWORK
2.1 Context

There are essentialthreeresponses to the network heterogeneity
that we noted above. The first is to progressivaly features to
existing middleware platforms to cope with the @ased levels of
heterogeneity (e.g. extensions to deal with mobdmputing). It

is now well recognized however that this leadsltmband is not

a viable long-term solution. The second approactoisreate
specialised per-application-domain middleware plats (e.g.
middleware for sensor networks). This approachyfelded some
success but suffers from significant limitations—+tgalarly in
terms of achieving interoperability and accommaugthe kinds

of ‘extreme’ heterogeneity (e.g. systems that irttg sensor
networks and clusters) referred to above. The third approach,
which we favour, is to offer eonfigurable frameworkhat can be
tailored to the needs of a given application anckrajonal
domain (or domains) while avoiding the shortcomin§she two
previous approaches. Configurable frameworks alawe hthe
benefit that they can potentially support run-tiraeonfiguration,
and thus address another emerging trend in modstribdted
systemsdynamicity and the consequent need dalaptivity.

In general terms, our research over the past feavrsybas been
targeting the development of such frameworks thinoaghumber
of projects including Open ORB [4], ReMMoC [22], tKé [11],
Gridkit [23], and through our contributions to tHRUNES
middleware [10]. The approach is well documented lamilds on
the complementary nature of lightweight softwaremponent
technology (together with component frameworkgpimdem with
reflection. Components and component frameworkvigeothe
building blocks and associated principled softwargineering
methodology for the construction of middleware, amflection
provides the means to inspect and adapt this unidgr(explicit)
structure, and thus additionally render it recamfagple at runtime
to address the need for adaptivity. OpenCOM [1&] &t the heart
of this architectural approach, offering the neaggsinderlying
lightweight and reflective component model.

We have employed this approach in the design of dpen
overlays framework that is the subject of this pap€he
framework is integrated as part of the wider Gridkiddleware
architecture [23], which also addresses heterogernini other
dimensions (e.g. in supporting multiple interacttgpes [24], and
in dealing with heterogeneous service discoventgoas [9]).
Aspects of the open overlays framework have preshobeen
presented in the literature [23, 24, 25]; but ie fbllowing sub-
sections we provide a consolidated overview andatgdo
provide context for the substantial evaluation makeén Sections
3 and 4 which forms the main contribution of thippr.

2.2 Basic architecture of the framewor k

The open overlays framework. The open overlays framework
(as visualised in Figure 1) is an OpenCOM compoframework
that is deployed on each participating node in dsributed

system. The framework accepts ‘plug-in’ componehts offer

various types of overlay-related behaviour. Morecéiically, the

types of components that can be plugged into thedwork are
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Figure 1. An example configuration of the open overlays
framework

i) Overlay plug-ins These are per-node implementations of
network overlays. For example, Figure 1 shows fouarlay
plug-ins: TBCP [35], Scribe [7], and plug-ins forGhord
Distributed Hash Table (DHT) and a Chord Key-Based
Routing (KBR) overlay [44]. Multiple overlays camperate
simultaneously in the framework either in mutuallasion
(cf. TBCP and Scribe in Figure 1) or in a stacking
relationship (e.g. Scribe and Chord DHT are bottkstd
atop Chord KBR). The overlay plug-in abstractiom dze
applied uniformly throughout the communication kta€or
example, transport protocols like TCP or UDP are
represented as overlay plug-ins, and an AODV oyerla
plug-in may be provided in the network layer in ANET
environment. Note, we term plug-ins implementing
transport behaviour (i.e. no routing) as null oagsl Hence,
the abstraction can even be applied at the levethef
physical network as demonstrated in Section 3.

Interface plug-insWhile overlay plug-ins provide different
types ofbehaviour interface plug-ins capture common API
patterns that can be shared by multiple overlaysr F
example, following [15], we provide an interfaceiglin for
DHT overlays and another for multicast overlays.eTh
indirection provided by interface plug-ins isolateigher-
layer software from the idiosyncrasies of indivitlogerlay
plug-ins, facilitates application-transparent ad#ph (i.e.
transparently replacing one overlay with anothehd
encourages a principled approach to the developroént
‘families’ of overlays plug-ins, each of which shara
common API.

i)

A pattern for overlay plug-ins. Overlay plug-ins are themselves
‘mini’ component frameworks (in OpenCOM, component
frameworks are inherently components), each of whas shown

in the left part of Figure 1, is composed of thdégtinct elements
(components) that respectively encapsulate theviillg areas of
behaviour:

i) control behaviour, in which the node co-operates with its
peer control element on other nodes to build aniditaia an



overlay-specific virtual network topology;

i)  forwarding behaviour that determines how the overlay will
route messages over the aforementioned virtualdggp

iii) state information that is maintained for the overlayg.e.
nearest neighbours.

Each of these three elements exposes a standaedads,
IControl, IForward, and IState respectively, which enables the
free composition of overlays (subject to the camfégion
constraints discussed below). We refer to this ettmlement
architecture as theverlay pattern The motivation for the overlay
pattern is to achieve flexibility in terms of batbnfiguration and
dynamic reconfiguration by enabling both controtl darwarding
behaviour to be independently replaced without lo§sstate
information. Note also that the overlay pattern éam a basis
for further decomposition—i.e. each of the threenants can
itself be a component framework. We consider such\werlay in
Section 4.

2.3 Local configuration and reconfiguration

Local configuration Each per-node instance of the open overlays

framework is dynamically configured at deploy-timossible
configurations are first set out in terms of a skpre-installed
profiles each of which specifies an available palette wdriay

and interface plug-ins and a set of basic constraimat specify
configurations that are recognised by the profle examples, we
have defined profiles for multicast environmentsl or wireless
sensor networks (see Section 4, table 6).

To support configuration, the framework employshbstatic and
dynamic meta-data as follows:

i) static meta-data is attached to the set of overlay phsg-i
currently available in the profile; this specifies set of
configuration rules (see below), constrains which other
overlay plug-ins may be stacked below the plugaitd may
also constrain which interface plug-in the overeguires;

i)  dynamicmeta-data is provided by a per-nammtext engine
[Capra,03]; this meta-data varies dynamically adicay to
the current state of the host node in terms ofvesle
characteristics such as battery life, network cotinigy etc.

The static configuration rules contained within lequrofile are
declarative XML-based expressions that specifycitrfiguration
possibilities supported by the profile. As an ex@mpthe
following configuration rule (expressed in pseudale rather
than XML for the sake of clarity) states that whermulticast’
service is requested by the application, and threeoti network
context is ‘fixed infrastructure with no IP mult&tasupport’, then
the TBCP overlay plug-in should be instantiated aodfigured
beneath the ‘overlay multicast’ interface plug-ine-ito match
one of the configurations shown in Figure 1:

if (multicast & fixed_infrastructure &
'IP_nulticast)
configureoverlay_multicast interface with TBCP

Once the execution of such a rule has resultebdnrtstantiation
of a ‘top-level’ overlay plug-in (i.e. TBCP in owxample), the
configuration process continues in a delegated erawhich we
refer to astop-down recursive instantiatiorThis involveseach
overlay plug-in evaluating its own configuratiories, and on that

basis selecting, instantiating (or discovering) awafiguring a
further overlay at the next level down. This pracesntinues
until an overlay plug-in is encountered which hasroles that
trigger any further instantiation.

Local reconfiguration Having established a configuration as
discussed above, it is possible to dynamically mégare a node’s
overlay configuration using the ‘standard’ OpenCQlective
capabilities [12]. For example, one can inspect therent
composition of components in the framework, replaceadd
components, or add interceptors. However, in lifth the usual
semantics of OpenCOM component frameworks, all saations
are subject to ‘veto’ if they would violate the meatata
constraints associated with the profile or the entrrstate of the
framework instance. For example, a constraint & tverlay
framework is that there must be a null overlay ghluge.g.
transport or physical network component) at thetdmtof the
overlay framework configuration.

2.4 Distributed deployment & reconfiguration

While local configuration and reconfiguration redy static and
dynamic meta-data available on each nodeistributed
configuration (i.e. overlay deployment) and recgufation both
rely on generic support provided by OpenCOMistributed
component frameworDCF) facility [25].

DCFs are coordinated sets of local component fraomew
instances that are spread across a set of co-tedimodes. For
example, a DCF-enabled extension of the TBCP oyeilag-in
from Figure 1 would contain an instance of the TB@fponent
framework for every node participating in the owagrl DCFs
support dynamic reconfiguration both at a coarsergd (e.g.
changing the top-level overlay in use), and a fir@ned level
(e.g. changing the overlay plug-ins underlying tbp-level one,
or changing one of the elements within an individagerlay

plug-in).
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Figure 2. The per-node elements of a Distributed Component
Framework

The DCF facility is supported by the per-node amtture
illustrated in Figure 2. Briefly, both deploymentnda
reconfiguration are driven bgonfigurators which select and
apply reconfiguration ‘policies’—i.e. scripts to hexecuted on
each DCF node to enact a specified deploymentooinfeguration
action. The selection of these policies from aqpotiepository is
performed similarly to the local configurationsiefigurations



discussed in section 2.2 (i.e. based on meta-cat@a@nfiguration
rules).

DCFs themselves can be very flexibly configuredoading to
application needs. For example, depending on thabets of
participating nodes, each DCF may employ a singlester
configurator or per-node distributed configurat@snilarly, they
may employ either a single or multiple context eegand policy
database. In addition, the strategies used to &Eliensensus in
the case of distributed configurators, or to achieuiescence
before applying a policy script, can all be flexilsonfigured. We
also support configurable strategies to post-védidaolicy
enactments, ranging from simple but scalable gfiegebased on
exceptions to a fully reliable (but not very scédbtransaction
protocol. Each DCF also maintains a meta-interfgsee
IDistributedMetaArchitecturén figure 2) that enables the atomic
insertion (deletion) of components into (from) thecal
component framework instances on all the partigiganodes.
The meta-interface also reifies information abdwe DCF in
terms of its participating nodes and their curreomponent
configurations. The communication underlying thetaviaterface
is implemented in terms of a lightweight group menship
service [21].

For safe dynamic reconfiguration it is importantensure that
updates do not impact the integrity of the systéfance, the
distributed framework must be made safe to adamtpiacing it
in a quiescent state. We have so far developeaigiesicentralised
implementation for deriving a safe state in thetriisted

framework (this is used for the evaluation resintsection 3). A
request to reconfigure the distributed framewornfra central
node generates a request message asking eachfrinoalwork

instance to be placed in a quiescent state; thissage is
propagated via gossiping through the meta-grouygicgerOnce a
local framework is in a quiescent state it retuansotification to
the configurator node. Upon the condition thatnadimbers are in
a quiescent state the reconfiguration can take eplathe
disadvantage of the centralised approach is thataiy be too
resource intensive, and may not scale suitabljaiae numbers
of nodes. Additionally, it may not be necessarylace all nodes
in a safe-state at the same time, or have a simgle managing
the transition to a safe state. Hence, our framkwatso supports
selectable approaches to safe-state managementcématbe
tailored to the particular style of reconfiguratitmbe performed
and the environment that the framework is deployed.

In sum, in the context of the open overlays framwtbe DCF is

used to make coordinated changes across all memololeis of an
overlay. For example, in a spanning tree overlagih we can in
one action change the topology of the overlay feotfewest hop’

to a ‘shortest path’ configuration by reconfiguritige control

element of the plug-in on each node (see Sectio8iBjilarly, we

might change the routing strategy of a multicagtriay to anycast
by globally reconfiguring the forwarding elements.

3. CASE-STUDY BASED EVALUATION
3.1 Background

We now discuss the application of the open overfegimework
in an implemented real-world scenario: wirelessseemetwork-
based real-time flood forecasting in a river vaileyhe north west
of England. This work has previously been publisiiean an
application perspective [28]; this paper, in costiratakes a
gquantitative perspective and focuses especiallythendynamic

reconfigurability capabilities of the open overlays framework in

the scenario.

In terms of necessary background, we monitor wdemth and
flow rate in the river by deploying a number of cipéised sensor
nodes along the banks of the river. About 15 nadescurrently
deployed. The sensor data is collected in real-ttamd routed
using a spanning tree topology to one or more desagl ‘root’

nodes. From there the data is forwarded via GPRSpediction
model that runs on a remote computational cluster.

Each sensor node (known as ‘GridStix’) comprise408@MHz

XScale CPU, 64MB of RAM, 16MB of flash memory, and

Bluetooth and WiFi networks (the root nodes ar® aquipped
with GPRS). Each GridStix is powered by a 4 walhisarray and
a 12V 10Ah battery. They run Linux 2.6, version hfithe
JamVM Java virtual machine. Unlike traditional semaetwork
deployments, wherein sensors are merely resporfsiblelaying
sensor data to off-site processing facilities, ttéployment makes
significant use of local processing, which is ugedsupport
computationally complex sensors and to support kbeal
prediction of future environmental conditions. THimctionality
necessitates rich support for heterogeneous netigctnologies.
On the one hand, networking support must be saffity power-
efficient that nodes may operate for extended gesriaf time. On
the other hand, applications such as image-basedgdtediction
also require high performing (and implicitly powéungry)
networking support.

This need for heterogeneity is further compoundgdvarying

resilience requirements: During quiescent periedsen flooding

is unlikely, data may reach the off-site clustethma high delay.
Faults in the network may take a long time to kmvered from,

since they might only jeopardise the completeness

measurement logs. In these periods, low energyucoption is a
prime requirement to maximise the life-time of tlsensor
network. By contrast, when a flood is imminent, want the

network to react quickly, while providing a high gilee of

resilience (e.g. a low sensitivity to disruptiorsyen if this means
its energy supplies get depleted much more rapidly.

To support these heterogeneous application regeitesnwe have
implemented tailored Flood-WSN profilen top of our Overlays
Framework, which we deployed on each node in thearé. In
the remainder of this section we describe in matits how we
mapped our application requirements unto this dorspecific
profile. We also present lines-of-code (LoC) and nmoey
footprint measurements to convey an idea of the snd
complexity incurred by this implementation of tpiwfile.

In a second part (Sections 3.3 and 3.4), we thecuds the overall
performance of the resulting system, in terms lafency
resilience and power consumptianin particular we look at the
impact of the reconfigurations made possible byftaenework.
More specifically, the figures we present show that use of the
framework has no detrimental impact on the ovgratformance
of the flood prediction network, and that the reaguration
mechanisms embedded
overheads, two crucial preconditions for the depiemt of our
technology in real applications.

3.2 TheFlood-WSN profile

Our application supports reconfiguration along tdimensions,
which both lend themselves to the structures offeby our
Overlays Framework:

o

in the framework cause acteptab



i) At the physical network level each node can use either
Bluetooth or WiFi (802.11b). Both technologies have
extremely different throughput, energy, and rangmerties
as summarised in Table 1 (These power draw figares
based on Ericsson ROK-104-001 BT modules, and Marve
88W8385 WiFi modules. The given range figures were
measured using strategically deployed directiong¢ranas
WiFi provides the highest throughput and longestea but
at the cost of energy consumption almost an order o
magnitude higher than Bluetooth. Typically Bluetoot
would be used in quiescent conditions, and WiFi in
imminent flooding situations.

At the data routing level data may be routed from the
sensor nodes to the root node along two differgnes of
spanning tree: either using a ‘shortest path’ (Si),a
‘fewest hop’ (FH) strategyrewest hogFH) spanning trees
are optimised to maintain a minimum number of hops
between any given node and the root. FH trees nspithe
data loss that occurs due to node failure, busabeoptimal
with respect to power consumptioshortest path(SP)
spanning trees are optimised to maintain a minimum
distance in edge weights from any given node to the
distinguished ‘root’ node; edge weights are derifreth the
power consumption of each pair-wise network linR.t8es
tend to consume less power than FW trees, but ptierer
performance;

i)

Table 1. Relevant characteristics of Bluetooth and WiFi

Throughput Power Draw Range
Bluetooth 786Kbps  0.4W typical up to 200M
WiFi 11Mbps 2.9W typical up to 1.2KM

These two levels of optional configuration are eefied in our
Flood-WSN profile by four options (WiFi, BluetootSP and FP
spanning trees). As FH and SP overlays differ anlyerms of
their forwarding components, an FH overlay mayrbplemented
simply by creating a new forwarding component aadising the
state and control components of the SP tree.

The storage memory footprint (on disk) of the résgl code is
shown on Table 2. The Flood-WSN profile consumest 28KB
of storage memory, and an average of 105KB of dynamemory
during execution inclusive of platform specific owveads such as
the Java virtual machine running on the GridStixotder to save
dynamic memory, overlays are instantiated on demaather
than being maintained concurrently.

Table 2. Footprint of the WSN Profilein deployment.

Storage M emory
OpenCOM 52.4KB
Overlays Framework 23.8KB
Flood-WSN Profile 28.0KB
Total 104.2KB

The WiFi/Blueetooth capabiliies were extremely yeat
implement as they directly rely on OS-level cagtibd. Much

more interesting for the assessment of the OveRagmework is
the implementation of the two types of Spanninge$rmpologies,
whose size and footprints are described in TablEh&. spanning
tree plug-ins necessitated the creation of foussda on top of the
underlying framework, one for each element of therkys
pattern that we presented in Section 2.2. Twoselaserved both
spanning trees (the control and state componemtgh, two
differentiated forwarding components were impleradntone
creating an SP tree, and one an FH tree. Impoytaadl Table 3
shows, this re-use of components between FH ande8® allows
an additional tree overlay to be implemented byagpg a single
component at a storage cost of only 6.5KB.

Table 3. Breakdown of Overlay Memory Footprint

Shortest Path (SP) Fewest Hops (FH)

Size LoC Size LoC
Control 7.3KB 124 re-used re-used
State 2.5KB 24 re-used re-used
Forward 6.3KB 346 6.5KB 352

3.3 Overall Performance

We now discuss the overall performance of the tiesul
application, in terms oflatency resilience and power
consumption More precisely, we start with a quantitative
evaluation of the relative costs and benefits efuhrious options
identified above as a basis for determining thedd@ns under
which the system might best be reconfigured. Wst fitiscuss
how the use of Bluetooth or WiFi influences thereleteristics of
the network, and then move on to compare the twerdnt
spanning tree configurations (Fewest Hops and 8sfeath).
The criteria employed include both generic metriasd
application-specific concerns (see below). The gemsetrics are
as follows:

i) Latency We quantify this in terms of the average latency
with which messages can be relayed from each semwsts
to the root node (and thence to the back-end firediction
models).

Resilience This is a function of the extent to which the
failure of a given node reduces the overall coreduss of
the network. We quantify it as the number of viatdates
between each node and the root.

Power ConsumptianAlthough the GridStix are equipped
with solar panels, power consumption is still atrexely
important factor given that flooding occurs in ciimhs of
low light intensity! We quantify this as the perghpower
consumed during the transmission of a 1KB sensadting
from each node to the root.

i)

ii)

In all cases we measure and plot each of thesdacsédtr each
node in the network. The figures were obtained hypiecal
measurements on a lab version of the deployed mysigh a
topology as shown in Figure 3.
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10000 The Bluetooth and WiFi configurations were evaldasgainst
each other using a common configuration at the SipgnTree
level in both cases (we chose an SP configurakiahis designed
to minimise power consumption). In Figure 4a, tlaéehcy’ graph
Reporting BT shows that WiFi incurs significantly less latentyan Bluetooth
Latenc)l/oo’ AR R R | RV\Y/1 = (over nodes B-O—i.e. 14 non-root nodes): averagmrtig
ms) latency for the latter was 2,912ms, compared t6 3&ns with
Iy rrrrrrrrnrn WiFi. The ‘resilience’ graph (in Figure 4b) agaihosvs Wifi
| | I I | ‘ | | performing significantly better than Bluetooth: theverage
e R number of routes from each node is 13.2 for Wifnpared to just
BCDEFCGCHI JKLWNNC 4.4 for Bluetooth. Finally, the ‘power consumptiogtaph (in
Node IC Figure 4c) shows that Bluetooth consumes signifigatess
power than the lowest power WiFi configuration. Téeerage
per-hop power consumption was 0.44 Watts for Bloitoand
Figure 4a. Physical Network L atency 2.35 Watts for WiFi.

) . In summary, and as expected, WiFi offers lower rnleyeand

Physical Network Resilience higher resilience than the Bluetooth configuratibat consumes
16 significantly more power. It is also interestingnote that for each
of the three properties evaluated there are swifi variations
across the nodes. This implies that a decisioroabhéd optimal
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Figure 5c. Spanning Tree Power Consumption

In Figure 5a, the ‘latency’ graph shows FH perfargi
significantly better than SP: the average reporatgncy with FH
was 11 milliseconds compared to 28 milliseconds $&. As
expected, reporting latency in both cases tendsd@ase with
separation from the gateway node (the nodes tddheof the bar
chart happen to be those that are physically ldchtghest from
the root). On the ‘resilience’ graph (in Figure 5BH again
performs significantly better than SP: the averagenber of
nodes affected by node failure in FH was 1.29, @spared to

2.64 for SP. Finally, the ‘power consumption’ grgphFigure 5c)
shows that FH consumes significantly more powen t8®: the
average per-hop power consumption was 3.39 WattsHband
2.35 Watts for SP.

In summary, FH is significantly better than SPamts of latency
and resilience, but consumes significantly more growAgain
there are significant variations from node to nodehese
differences between the FH and SP topologies, astveen
individual nodes tends to show that the main dsvier these
measurements lay outside of the Overlay Framewod the
Flood-WSN profile, whose impact is probably nediigi
compared to other influencing factors, such as lémgths of
routes, and the characteristics of the wireledsrielogies in use.

Triggering Reconfiguration: Reconfiguration is supported in our
sensor network though the Distributed ComponenimEraork
facility included in the Overlays Framework (seect@m 2.4).
The reconfiguration opportunities arising from #i®ove analysis,
and the associated ‘triggers’ that drive the systieom one
configuration to another are expressed with detlara
configuration rules, summarised in Figure 6 in fibven of a state
transition diagram (to avoid excessive presentaticomplexity,
the diagram represents a drastically simplifiedwief the
implemented system). We also show a representpsigado-code
configuration rule relating to one of the trangisqthe top one).

{High_Flow* && High_Battery) || Flood_Predisted**

High Flow* &% High Battenyr  Flood Predistedt

SP SP FH
Bluetooth WiFi WiFi
guEseent siate alert state ENErEErY state

<« <L’

|High Battery | High_Floare* IFlood_Predicted**

{IFlood_Predicted**) && {1High Flow*)

** Require Lower Lawgney *Resiliency Rish
If (High Flow &£ High EBattery)
|| Flood Predicted
replace Blustooh with Wifi
replace 3T.sp with 2T.fh

Figure 6. Reconfiguration states and triggers (smplified)

As can be seen, the triggers/rules are partly basdtle factors of
latency, resilience and power consumption discusdeEnie; but
they also include two additional application-spiecifiggers. The
first of theseHigh_Flow, is based on attaching a video camera to
some of the nodes, pointing this at the river safaand
estimating river flow rates by carrying out somengie image
processing on the resultant images. In the offlend_Predicted
the trigger is provided by so-called point predintimodels [3]
which provide localised predictions of water deptsed on the
collated readings of depth sensors in the immediatality.
Interestingly, the computations underlyingligh_Flow and
Flood_Predictedrun in a distributed mannesn the GridStix



nodes themselvesind the open overlays framework is used to used in Section 3.2. The average time required M8a8 ms. To

instantiate additional overlays to handle the comtibn involved
in these distributed computation (cf. the principfesupporting
multiple co-existing overlays).

3.4 Evaluating the cost of reconfiguration

While dynamic DCF-based reconfiguration clearlyl#aa system
utility to be optimised for varying environmentalraitions, there
is a cost associated with each reconfiguration aifmer in terms
of the time taken to perform the reconfigurationd @ahe power
consumed by the additional CPU and network activityese are
significant costs: time taken reconfiguring is timering which
the network is out of commission (involving loshser readings);
and consuming additional power clearly increases rikk of
losing nodes due to power depletion. We theref@eied out
experiments to evaluate the cost of reconfiguratiorour case
study scenario. We focused on reconfiguration at $panning
Tree level as this avoids network-specific overlsetttht would
inevitably impact measurements involving switchlmgween the
two physical networks.
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Figure 7b. Reconfiguration costsin terms of power

Figure 7a shows the per-node time required to fagume
between FH and SP spanning trees for the sameomptiat was

put this in perspective, at typical sensing ratesduin the case
study this implies an average loss of less thanmessage (0.36
messages).

Figure 7b shows the per-node power costs associaiédu
reconfiguration from FH to SP and vice versa (thésea
difference in cost between the two directions beeatne DCF
was configured to employ the current overlay to paup
reconfiguration operations). When reconfiguringniré&H to SP,
network power costs an average of 44.2 milliwatirisoof battery
life per node. When switching from SP to FH, netwgower
costs average 23.5 milliwatt hours. But to put thiperspective,
the maximum power consumed during overlay reconditjon for
any node (46 milliwatt hours) is equivalent to I&san 0.05% of
the battery capacity of a GridStix, which in condtion with the
infrequent nature of reconfiguration is effectivaelggligible.

Overall, it can be seen that the power and timerhmaxls of
reconfiguration are relatively small, particuladgmpared to the
potential benefits of optimising the system to entrconditions.

For comparison, and in order to apportion the shafrehe
Framework’s mechanisms in reconfiguration costseraye
overheads for local reconfiguration in the Framdware
provided
reconfiguration overhead is quite reasonable, amegal98 ms,
and roughly only represents one tenth of the régardtion time
observed on each node, the rest being due to teacla of
message passing that is required to support distdb
coordination, and thus outside of the Open Oversiyscture.

Table 4. Time over head of Reconfiguration.

Overhead (ms)

Component Creation 118
Component Binding 69
Component Connection 11
Total 198

3.5 Conclusion

This case study shows that different level of nekwo
heterogeneity (here both in wireless technologies], in overlay

topologies) can easily be captured into the strestuof our

Overlays-Framework. The decomposition of overlayggihs into

three standard components also encourages reusgsallaws

developers to support a wide scope of alternatveigurations at
a relatively low cost in terms of memory footprind

implementation effort.

Finally, the performance figures we presented sth@tithe use of
the framework has no obvious detrimental impacthef overall

performance of the flood prediction network, andatththe

reconfiguration mechanisms embedded in the framlewause
acceptable overheads, two crucial preconditions ftbe

deployment of our technology in real applications.

4. LESSONSLEARNT AND DISCUSSION

In this section, we expand on the conclusion of ¢hee-study
evaluation and we present the lessons we havetlearnthe
benefits of our Open Overlays framework as we agplt to a

in Table 4. This shows that the frameworks



number of different domains. We discuss qualitdyivéhe
advantages of the framework in terms of softwareeligpment,
and present some more extensive performance figresms of
memory footprint and configuration times for sonfettee many
plug-ins we have already implemented.

We finish this section with a general discussiortha value we
see in the fundamental notion of overlays as amit@atural
principle for heterogeneous middleware.

4.1 Benefitsof the open overlays framework

We evaluate the effectiveness of the open overfeymework
against the following four criteria:

i) Generality To what extent can the framework be generally

applied in terms of different network services dgpd in
different network environments; and how generalthis
overlay pattern in developing overlays?

i) Ease of UseHow easy is it for a developer to use the

framework, and extend it with new functionality?

iii)  Configurability,: To what extent can the framework be
configured to meet specific requirements and envirents
(an in-depth evaluation akconfigurability is provided in
Section 3)?

iv) Resource Overheads the overhead incurred to support
generality, configurability and reconfigurabilitg@eptable?

Generality As an indicator of generality, we have developed
substantial set of overlay plug-ins of which Tabldists eight.
From this list, the generality in terms of the netk services
provided is clear: we cover KBR protocols (e.g. €hand
Pastry), a DHT overlay, multicast protocols (e.@ril% and
TBCP), gossip overlays (Scamp), and more specibliserlays
such as a node failure monitoring overlay, and ansing tree
overlay for fan-in routing. Table 5 also shows toafigurability
options offered by each overlay plug-in (in braskédllowing the
descriptions), and illustrates that the framewaak be generally
applied in different network environments (thus radding
network heterogeneity): e.g. we can use the Spgniiree
overlay in a wireless sensor network (see Sectjoar®d we can
choose different multicast protocols for differergtworks: e.g.
TBCP for wide area networks, or Scamp for wirelessvorks.

These various implementations also provide a strand
comprehensive evaluation of the overlay patterhemht were
straightforwardly implemented in terms of the thrdefined
elements (i.e. control, state and forward), pravgdilear evidence
that the pattern applies generally to different rtaye types.
Moreover, each of the implementations exhibits aarcland
natural separation of concerns in contrast to mamonolithic
implementations.

As shown in Figure 8, one of the eight overlays, Pastry
KBR, was further decomposed to investigate finexirged
configurability and reconfigurability (for exampléhe control
element is composed of sub-components corresponadidiptinct
Pastry algorithms, i.e. for joining, leaving, manance and
repair). This decomposition demonstrates that trezlay pattern
can itself be extended to meet the complexitiesnodividual
overlays and yet still be supported by the framéwor

| |
Control [Forwarder] [ State J

[ | | |

. X . Routing eighbourhood
[ Join ][ Leave ][Malmenance][ Repaw] [LeafSet][ Tahle ]f Sat ]

i

Figure 8. Extending the overlay pattern in the Pastry KBR
plug-in

Table5. Descriptions of some implemented overlay plug-ins

Overlay Description and configurability options

Name

Chord A KBR overlay based on Chord [44] (options:

KBR standard or ‘dependable’ control element; 2 choiges
of supporting overlay)

DHT Data storage overlay (options: standard or
‘dependable’ control element; used atop any KBR
overlay)

Pastry A KBR overlay based on Pastry [41] (options:

KBR supports alternate overlay maintenance algorithns)

Failure Monitoring overlay based on [45]; detects and

Monitor disseminates node failure info (options: used atop
any gossip overlay)

SCAMP Scaleable Group Membership overlay with gBssi
based forwarding [21] (options: 2 choices of
supporting overlay)

Scribe Multicast based on [7] (options: used atopkKBR
overlay)

Spanning | Tree overlay for fan-in routing (options: shortest

Tree path or fewest hop tree configurations; used atop
either Wifi or Bluetooth ‘overlays’)

TBCP Wide area multicast overlay [35] (optionsnstard
or ‘dependable’ control element; 2 choices of
supporting overlay)

Ease of use The framework has been used by over 15
programmers, from a range of institutions, withfatiént levels of
programming experience, in a number of system deweént
projects (e.g., projects developing middleware feensor
networks, resource discovery, and publish-subscriBeme of
these programmers contributed as ‘plug-in devekipspme as
‘framework configurers and users’, and some as .b&ttom
observation and discussion were able to draw tHewing
conclusions:

Plug-in developers generally understood and foltbwlee
approach implied by the overlay pattern, and ts thitent
their solutions are easily deployable by third part
application developers. A caveat is that in someesa
control, forward and state were not completely sxpd



into distinct components. This is an area wherehéir
software engineering support might benefit bothghug-in
developer and the framework configurer/ user.

ii) A typical overlay plug-in is developed in a timaurne of 2
to 8 weeks depending on the complexity of the @ayerl

iii) Framework users found it relatively easy to apphe t
existing profiles of the framework; but in casesenhnew
configuration rules needed to be defined, they esqed the
need for clearer documentation of the set of atteb and
context values understood by the framework.

Hence, despite the fact that the evidence is piiynanecdotal,

and that there are areas of possible improvementelieve that
it is reasonably safe to conclude that third parttan use the
framework with relative ease.

Configurability To measure the extent of the configurability of
the numbers of possible

the framework we calculated
configurations in each of four profiles (i.e. armigty’ profile

consisting of only the framework itself, a ‘WSN'’ dfite for

wireless sensor network environments, a ‘multicgstfile for

multicast overlays, and a ‘full’ profile containingll of the
foregoing; see Table 6). The numbers, which arensamised in
the rightmost column of Table 6, result from an axdtive
enumeration of all the configurations reachablethi&a ‘top-down
recursive instantiation’ process described in $acf.3, applied
to the set of plug-ins available in each profiler @xample, TBCP
can be configured with either a standard or a ‘ddpble’ control
element, and it can be layered over TCP and UDRspart
‘overlays’ and thus yields 4 configurations atiégel). The results
show that the more complex and well-populated [@®fupport a
very large number of possible configurations; ehg.‘full’ profile

has 26,999; this does not mean that programmerg mite

27,000 rules, rather the approximately 30 rulestHerfull profile

combine to offer many potential configurations. Bumore

importantly, because of the top-down recursive ainsation

process, all of these configurations are meaningiiflis is

because the architecture of the framework disallomelid

instantiations. This can be compared to other gondible toolkits
such as Ensemble [46] or JGroups (www.jgroups.avgjch,

despite supporting millions of combinations, offemuch smaller
number that are actually useful (because theseeusst-based
component bindings that allows components to benected to
any other in any order).

Furthermore, the overlay pattern contributes sigaiftly to the
configurability of the framework by supporting figeained
configuration of individual overlays. Consider, fexample, a
Gnutella implementation with either a random-wadiséd, or a
flooding-based forwarder; or a tree overlay witboatrol element
that either contains or doesn’t contain a self-ireglgorithm. This
applies equally when the overlay pattern is decaagdo For
example, our Pastry example above supports twanalige
implementations of the maintenance sub-componer:version,
which is based on the original Pastry algorithmplays frequent
leaf set broadcasts over TCP connections; the othgploys
UDP-based keep-alive messages to monitor the ctétteleaf set.
The latter algorithm is less robust to network widéure or
malicious attack, but generates far fewer netwoelssages.

Resource overhead To assess the price paid for its generality,

ease-of-use and configurability, we quantified thesource
overhead incurred by the open overlays frameworkthiree
experiments. All of these employed components feamalkit 1.5/

OpenCOM v1.3.5 (available from http://gridkit.soeferge.net),
executing on a Java 1.5.0.10 virtual machine onetaverked
workstation with a 3.0 GHz Pentium 4 processor, lyt& of
RAM and running Windows XP.

The first experiment (see Table 6) investigatedstadic storage
footprint costs of each profile; i.e. the disk space requicestore

the framework, components and configuration ruléss measure
is important as it illustrates the cost of storimgf only a starting
configuration but also any reconfigurations thayreabsequently
be applied. It can be seen from Table 6 that ttse Bemework
requires 60K before any plug-ins are added. Notat tie

configuration rules take a lot of storage (usuatlyeast 2KBytes)
because they are coded in XML. A more efficientrespntation
might be better for profiles that are both compex] designed to
be applied in resource-scarce environments.

Table 6. Configurability results and overheads for framework

profiles
Profile No. No. Disk mem. Disk mem Total No. of
plug- config. for config. for plug- configs
ins rules rules(KB) ins(KB) available
Empty O 0 0 60 1
WSN 7 6 16 146
Multicast 21 19 59 169 89
Full 40 31 87 252 26,999

Table 7. Perfor mance times and dynamic memory costs of
typical configurations

Configuration #plug- #ConnsProfileConfig. Dynamic
Name ins time (ms) mem. (KB)
Empty 0 0 Ful N/A 10,448
Empty 0 0 Sensor N/A 8,352
Spanning tree 5 12 Sensor 191 11,452
Spanning tree 5 12 Full 193 15,264
TBCP 6 12 Full 211 15,144
SCAMP 5 9 Full 152 13,708
Scribe/KBR 9 27 Full 486 16,652
Scribe + TBCP 13 39 Full 592 16,972
TBCP+SCAMP 10 21 Full 281 15,308

In the second experiment (see Table 7) , we ewaduditnamic
memory overheadby measuring the RAM footprint of overlay
plug-ins while they were in operation (i.e. joingm a running
overlay). We can see from Table 7 that the basiméwork with
no plug-ins is responsible for a high percentagehef overall
footprint (65% on average; note, however, that filgisre includes
6,392 Kbytes for the JVM and 600 KBytes for the OpOM
kernel). We can again reduce overhead in a giverogment
through the profiling mechanism (different profilegll have
different numbers of configuration rules in memorWlore
complex configurations, e.g. the layering of Scriver a Chord
KBR, or TBCP and Scamp deployed in parallel, obsipu
increases the footprint size, but by a small margig. adding
Scamp to TBCP results in a 164 Kbytes increase.



Finally, the third experiment (again, see Tableirfestigated
configuration performanceby measuring the time needed to
configure new plug-ins based on a sample of corditipns from
the different profiles (e.g. TBCP in the full prefi etc.). While it
is clear that configuration performance is largélgd to the
complexity of the configuration in terms of the rhens of
configuration rules and plug-ins involved, and thember of
inter-component connections etc., the overall obsbnfiguration
(including rule evaluation and component initiatisa) is largely
negligible compared to time for a node to join arertay (e.g.
Pastry averages 5 to 10 seconds for node joins. cifsts of
(DCF-based) distributed configuration (i.e. overlgployment)
need not be much more costly than this dependinty@mprotocol
used (e.g. Scamp [21]).

4.2 Assessing the open overlays concept

To evaluate the open overlays concept, we examiow h
successful we have been in achieving the desiredepties of
virtualisation of the network resource, co-existerd overlays,
and layering of overlays to compose network sesvite terms of
virtualisation, Section 4.1 has illustrated the range of overthgs
can be virtualised by common interfaces, e.g. iwastiand DHT
network resources. These have then been utiliséditd a wide
range of higher level middleware services, e.g.liphisubscribe,
group middleware [24] and sensor middleware (seti@e3) that
are independent of the network service; i.e. thidieiware can be
deployed in different networked environments withou
modification. This work has demonstrated that \ligation is
indeed a powerful concept when incorporated withinoverall
(configurable and reconfigurable) middleware aesttitre. This is
also something that is quite unique in that exgstiniddleware
platforms/ paradigms do not yet support networluailisation.

In terms ofco-existenceour experience shows that i) overlays can
be deployed in parallel, ii) this is indeed a usstrvice to offer,
and iii) the overheads of co-existence are readendhis is best
illustrated by the sensor network scenario in ®ect3, which
utilises three separate overlays. One outstandésgei is the
managementof co-existence, in particular in terms of QoS
properties. We are currently investigating the ptiéé role of the
work by Cooper [8] in addressing this problem. Hinan terms

of layering we have shown that relevant overlays can usehdly
stacked on top of each other, e.g. the Scribe aydédr the DHT)
can be stacked on top of either Pastry or Chomil&ily, in the
scenario in Section 3 we layer a Spanning Treelayem top of
either Bluetooth or 802.11b networks. The layerprgcess is
guided by top-down recursive instantiation andubke of uniform
interfaces, and promotes the reuse of lower-levetlay plug-ins.

5. RELATED WORK

Specialised middleware As mentioned in the introduction, one
approach to dealing with heterogeneity is to dgvedoseries of
specialist middleware platforms for particular daomsa of
operation. This approach has been most prevaletiieirmobile
computing domain, with a wide variety of platforramerging
including: context-aware and adaptive technologjés 37];
particular interaction paradigms [16, 14]; and magecific
techniques to deal with disconnection [29]. Someeresting
techniques have also emerged to deal with heteeityein
service discovery platforms, including the ReMMoGtform
from Lancaster [22] and the INDISS work at INRIA][S
Specialist middleware technologies have also endeigeareas

such as distributed multimedia [47, 17] and grignpating [19,
20].

There is currently strong interest in middleware fgensor
networks. This is a relatively new development diaiy on the
early experiences with operating systems in thés.aMiddleware
approaches for wireless sensor networks seek wd@@bstract
programming models that offer a more global distiglol systems
management perspective, often enabling multipldiegijons to

co-exist and share the underlying sensor infrastrac A good
survey of middleware for sensor networks can bedoin [26],

which includes a taxonomy for sensor middlewaretufiag

database-inspired approaches, tuple-space appsoacileevent-
based approaches as important sub-classes.

It is clear that significant advances have beenarmadterms of
specialist techniques for particular environmertalapplication
domains. Despite these advances, though, the $ipecia
middleware approach has a number of very signifitentations.

In particular, these solutions remain narrow inpecand do not
help with problems such as interoperability with@tdomains. In
addition, they are all developed independently adfheother and
there is no support for the re-use of softwaretireodomains, i.e.
there is no common architectural framework.

Configurable and reconfigurable middleware There has been
considerable interest over the last decade in tquba that
support configurability and reconfigurability in daleware. Such
techniques typically rely on underlying reflectiveupport

including both structural and behavioral reflecti@@xamples of
key reflective middleware platforms include the wat Lancaster
mentioned above, the families of platforms devetbme the

University of lllinois at Urbana Champaign [30, 3EXORB [40],

Arctic Beans [1] and RAPIDWare [42]. This paperldals this

general approach and reflection lies at the hefaduo proposal

for open overlays.

Other researchers are investigating the potenti@ of aspect-
oriented programming in supporting configurabled(@n some
cases reconfigurable) middleware platforms [48,. JHis is in
many ways complementary to reflective middlewaregking
higher level aspect-oriented constructs to exptlessveaving of
cross-cutting concerns in middleware. Indeed, some
implementations in this area build on top of reflez middleware
technology [18].

Overlay Frameworks As mentioned in the introduction, the
networking community has been carrying out a sigaift volume
of research directed towards the development ofarétoverlays.
However, most of this research has been targetedrds the
implementation of application specific protocolgisias peer-to-
peer substrates or multicast solutions. In thisicecwe focus on
the smaller number of initiatives focusing on mealdare
frameworks to support overlay software.

iOverlays [32] was one of the earliest attemptsdifine a
framework for the support of overlay networks. Esisdly,
iOverlays is low-level software cross-connect tHatwards
messages according to a script that embodies thangies of a
particular overlay. ODIN-S [8] also provides a frawork for
overlay development, with an emphasis on managasgurces
for overlays that share common nodes, i.e. co@xisbverlays.
As such this work is strongly complementary to o(iggl] also
explores the co-existence of multiple overlay neksoacross
nodes, in particular demonstrating that the maemes and
deployment of one overlay (in this case Pastry) gtlise the



behaviour of another (a gossip protocol) to impriiseoperation.
Both these systems illustrate use-cases that cawmeberally
developed using our open overlays framework.

Other solutions target the declarative descriptmh overlay
networks and the subsequent automatic generationodé to
implement the desired virtual network abstractiafi (nodel-
driven engineering) [2, 38, 33]. This is an intéireg approach to
managing the complexity of configurable middlewarke above
solutions focus almost entirely aonfiguring overlay networks,
i.e. on tool support for the generation of a giwrerlay style.
There is little or no work on the subsequent mansge of
overlays, specifically reconfiguration as contextamges. In
addition, all of the above are stand-alone toolkitsl are not
integrated into broader middleware
acknowledge that currently our framework is notleslarative as
these approaches in that low-level overlay codg. (@. Java or
C++) must be created first before being plugged iour
framework. However, we do believe the two approachee
complementary and we are investigating model-driygproaches
for generating code to insert into the open overfagmework.

6. CONCLUSIONSAND FUTURE WORK

We have presented and evaluated our concept of operays
and its associated framework—a framework that isighed to
comprehensively address the ‘network heterogenpityblem in
the context of middleware architecture. In our aa#ibn of the
open overlays concept, we have argued for the bnefs of
network virtualisation in a middleware context, tisefulness of
supporting multiple overlays per node and the stackof

overlays, and the benefits of structuring overlaluggns

according to the overlay pattern. In terms of themiework-
specific evaluation, we have focused on the framk\so
generality, its ease of use for both plug-in depets and
configurers/ users, the practicability of its caouofiation and
reconfiguration capabilities (employing top-down cuesive

instantiation,  declarative rule-based configuratiorand

reconfiguration, and distributed deployment andndiguration),

and the fact that it incurs only a modest resousgerhead.
Furthermore, we have presented a detailed casg efutktwork
heterogeneity and at the same time demonstratedstheof our
framework in a challenging, WSN-based, applicatimmtext in

supporting multiple overlays, and dynamically refaguring them

according to current environmental conditions.

In current work, we are integrating an overlay-ipeledent
dependability subsysterf86] into the framework. This can
significantly simplify the ‘control’ element of péeipating
overlay plug-ins by factoring out the task of oagrimaintenance
and delegating this to the framework. We also te¥hD project
that is using the open overlays framework as ttesbaf a sub-
framework specialising in ad-hoc routing protodal$/ANETS.

In future work, we are particularly interested inpporting
challenging scenarios involving ‘extreme’ networitérogeneity
of the type discussed in the introduction (e.golmwng systems
that span a sensor network, a fixed grid envirotrmand a
loosely-connected MANET). This is a fundamentalhakenging
issue in that it is not yet understood even howldsign overlays
that can successfully span such environments, leteaan
overarching framework. In addressing this challenge do not
foresee major problems in applying the basic teradtsour
framework on individual nodes; it will be the diburted
deployment and reconfiguration issues involving BGFat will

architectures.e W

present the major challenges (e.g. making appr@pdaoices in
terms of distributed versus centralised configusatguiescence
and validation algorithms, membership protocols,)et

More widely, we believe that users of mainstreanddi@ware
will increasingly demand overlay support, and se thallenge
will arise of how best to integrate the open owerlaoncept, or a
variant of it, in such platforms. We hope that #ageriences
reported in this paper will be of relevance in this
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